Open Access
Issue
E3S Web Conf.
Volume 137, 2019
XIV Research & Development in Power Engineering (RDPE 2019)
Article Number 01019
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/201913701019
Published online 16 December 2019
  1. IEA, International Energy Agency, 5 February 2019. [Online]. Available: https://www.iea.org/renewables2018/ (2018). [Google Scholar]
  2. The Linde Group, Air separation plants. History and technological progress, Linde AG, Pullach, Germany, (2017). [Google Scholar]
  3. Perez J., Sarasua J., Wilhelmi J., Contribution of a hydraulic short-circuit pumped-storage power plant to the load-frequency regulation of an isolated power system, Science Direct ELSEVIER, pp. 199-211, (2014) [Google Scholar]
  4. Howe T., Pollman A., Gannon A., Operating Range for a Combined, Building-Scale Liquid Air Energy Storage and Expansion System: Energy and Exergy Analysis, entropy, (2018). [Google Scholar]
  5. Hamdy S., Morosuk T., Tsatsaronis G., Cryogenics-based energy storage: Evaluation of cold exergy recovery cycles, Energy, pp. 1069-1080, (2017). [CrossRef] [Google Scholar]
  6. Sciacovellia A., Smitha D., Navarroa H., Lia Y., Dinga Y., Liquid air energy storage - Operation and performance of the first pilot plant in the world, ECOS 29Th International Conference on Efficiency, Cost and Optimization, (2016). [Google Scholar]
  7. HighviewPowerStorage, Liquid Air Energy Storage, United Kingdom, (2017). [Google Scholar]
  8. Hamdy S., Morosuk T., Tsatsaronis G., Exergetic and economic assessment of integrated cryogenic energy storage systems, Cryogenics journal, (2019). [Google Scholar]
  9. Bejan A., Tsatsaronis G., Moran M., Thermal Design and Optimization, New York, United States: Wiley, (1996). [Google Scholar]
  10. Lazzaretto A., Tsatsaronis G., A systematic and general methodology for calculating efficiencies and costs in thermal systems, Energy Int. J., pp. Vol. 31, pp.1257-1289., (2006). [CrossRef] [Google Scholar]
  11. Meyer L., Tsatsaronis G., Buchgeister J., Schebek L., Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems, Energy Int. J., pp. Vol. 34, pp.75-89, (2009). [CrossRef] [Google Scholar]
  12. Tsatsaronis G., Morosuk T., Understanding and improving energy conversion systems with the aid of exergy-based methods, Int. J. Exergy, (2012). [Google Scholar]
  13. Goedkoop M., Spriensma R., The eco-indicator 99: a damage oriented method for Life Cycle Impact assessment, Methodology Report, (2000). [Google Scholar]
  14. S. P. a. t. E. Ministry of Housing, “ Eco-indicator 99 Manual for Designers: A damage oriented method for Life cycle impact assessment,” 6 March 2019. [Online]. Available: : https://www.pre-sustainability.com/download/EI9 [Google Scholar]
  15. Kelly S., Tsatsaronis G., Morosuk T., Advanced exergetic analysis: approaches for splitting the exergy destruction into endogenous and exogenous parts, Energy Int. J., pp. Vol. 34, pp.384-391., (2009). [CrossRef] [Google Scholar]
  16. Tsatsaronis G., Moung-Ho P., On avoidable and unavoidable exergy destructions and investment costs in thermal systems, Energy Conversion and Management, pp. 1259-1270, (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.