Open Access
Issue |
E3S Web Conf.
Volume 137, 2019
XIV Research & Development in Power Engineering (RDPE 2019)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/201913701020 | |
Published online | 16 December 2019 |
- Mehos M., Turchi C., Vidal J., Wagner M., Ma Z., Ho C., et al. Concentrating Solar Power Gen3 Demonstration Roadmap. NREL Tech Rep pp. 1-140, (2019). [Google Scholar]
- Philibert, C. Technology roadmap,: concentrating solar power. OECD/IEA, (2010). [Google Scholar]
- Turchi C.S., Ma Z., Neises T., Wagner M., Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for High Performance Concentrating Solar Power Systems. Proc. ASME 2012 6th Int. Conf. Energy Sustain. San Diego, CA, USA, (2012). [Google Scholar]
- Crespi F., Gavagnin G., Sanchez D., Martinez GS., Supercritical carbon dioxide cycles for power generation: A review. ApplEnergy, Vol. 195, pp . 152-83. (2017); [Google Scholar]
- Dyreby JJ., Modeling the Supercritical Carbon Dioxide Brayton Cycle with Recompression. The University of Wisconsin-Madison, (2014). [Google Scholar]
- Wright SA., Davidson CS., Husa C., Off-design performance modeling results for a supercritical CO2 waste heat recovery power system. 6th Int. Supercrit. CO2 Power Cycles Symp., pp .1-10. Pennsylvania, USA (2018). [Google Scholar]
- de la Calle Y., Bayon Q., Soo Too YC. Impact of ambient temperature on supercritical CO2 recompression Brayton cycle in arid locations: Finding the optimal design conditions. Energy, Vol.153, pp.1016-27. (2018) [CrossRef] [Google Scholar]
- Wang, Kun, Ming-Jia Li, Jia-Qi Guo, Peiwen Li, Zhan-Bin Liu, A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants. Appl Energy, Vol.212, pp.109-21, (2018). [Google Scholar]
- Ma Y., Morozyuk T., Liu M., Yan J., Liu J., Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach. Appl Energy, Vol.242, pp.1134-54, (2019). [Google Scholar]
- Weiland N, Thimsen D. A Practical Look at Assumptions and Constraints for Steady State Modeling of sCO2 Brayton Power Cycles. No. NETL-PUB-20271. NETL, (2016). [Google Scholar]
- Held, Timothy J. Initial test results of a megawatt-class supercritical CO2 heat engine. 4th International Symposium on Supercritical CO2 Power Cycles, (2014). [Google Scholar]
- Lemmon EW, Huber ML, Mclinden MO. NIST Reference Fluid Thermodynamic and Transport Properties. REFPROP database 23: v7, (2002) [Google Scholar]
- Sienicki JJ, Moisseytsev A, Fuller RL, Wright SA, Pickard PS. Scale Dependencies of Supercritical Carbon Dioxide Brayton Cycle Technologies and the Optimal Size for a Next-Step Supercritical CO2 Cycle Demonstration. 3th International Symposium on Supercritical CO2 Power Cycles, (2011). [Google Scholar]
- Li H, Yang Y, Cheng Z, Sang Y, Dai Y. Study on off- design performance of transcritical CO2 power cycle for the utilization of geothermal energy. Geothermics, Vol. 71, pp.369-79, (2018); [Google Scholar]
- COOLKE D.. Modeling of off-design multistage turbine pressures by Stodola’s ellipse. Energy Incorporated PEPSE User’s Group Meeting. Richmond, VA, Nov, pp. 2-3. (1983). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.