Open Access
Issue
E3S Web Conf.
Volume 146, 2020
The 2019 International Symposium of the Society of Core Analysts (SCA 2019)
Article Number 01003
Number of page(s) 11
Section Core Analysis in a Digital World
DOI https://doi.org/10.1051/e3sconf/202014601003
Published online 05 February 2020
  1. P. Gouze and L. Luquot, “X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution”, J. of Contaminant Hydrology, 120-121, pp. 45–55, doi: 10.1016/j.jconhyd.2010.07.004, (2011) [CrossRef] [Google Scholar]
  2. L. Luquot, V. Hebert and O. Rodriguez, “Calculating structural and geometrical parameters by laboratory measurements and X-ray microtomography: a comparative study applied to a limestone sample before and after a dissolution experiment”, Solid Earth, 7, pp. 441-456, doi: 10.5194/se-7-441-2016 (2016) [CrossRef] [Google Scholar]
  3. S. Youssef, E. Rosenberg, N. Gland, S. Bekri and O. Vizika, “Quantitative 3D characterisation of the pore space of real rocks: Improved μ-CT resolution and pore extraction methodology”, Int. Symp. Soc. Core Analysts, Calgary, Canada, Sept. 10-12, Paper SCA2007-17 (2007) [Google Scholar]
  4. R. Al-Raoush and A. Papadopoulos, “Representative elementary volume analysis of porous media using X-ray computed tomography”, Powder Technology, 200, pp. 69-77, doi: 10.1016/j.powtec.2010.02.011 (2010) [Google Scholar]
  5. G. Wang, “A Perspective on deep imaging”, IEEE Access, 4, 8914-8924, Nov. 3, doi: 10.1109/ACCESS.2016.2624938 (2016) [CrossRef] [Google Scholar]
  6. T. Würfl et al., “Deep learning computed tomography: Learning projection-domain weights from image domain in limited angle problems”, IEEE Trans. Med. Imaging, 37, pp. 1454-1463 (2018) [CrossRef] [PubMed] [Google Scholar]
  7. Y. Mikia et al., “Tooth labelling in cone-beam CT using deep convolutional neural network for forensic identification”, Computers in Biology and Medicine, 80, pp. 24-29 (2017) [CrossRef] [PubMed] [Google Scholar]
  8. A.T. Lopes, E. de Aguiar, A.F. de Souza, T. Oliviera-Santos, “Facial expression recognition with convolutional neural networks: Coping with few data and the training sample order”, Pattern Recognition, 61, pp. 610-628 (2017) [Google Scholar]
  9. M.A. Naranjo Leon et al., “Rock typing mapping methodology based on indexed and probabilistic self-organized map in Shushufindi field”, SPE Latin American and Caribbean Petroleum Engineering Conf., Rio de Janeiro, Brazil, Nov 18-20, Paper SPE-177086-MS, doi: 10.2118/177086-MS (2015) [Google Scholar]
  10. J. Chen and Y. Zeng, “Application of machine learning in rock facies classification with physics-motivated feature augmentation”, Machine Learning, Geophysics, arXiv:1808.09856 (2018) [Google Scholar]
  11. S. Berg, N. Saxena, M. Shaik and C. Pradhan, “Generation of ground truth images to validate micro-CT image-processing pipelines”, The Leading Edge, Advancements in image processing, 37, pp. 412-420 (2018) [CrossRef] [Google Scholar]
  12. S. Karimpouli and P. Tahmasebi, “Image-based velocity estimation of rock using convolutional neural networks”, Neural Networks, 111, pp. 89-97 (2019) [CrossRef] [Google Scholar]
  13. M. Araya-Polo, F.O. Alpak, S. Hunter, R. Hofmann and N. Saxena, “Deep learning-driven pore-scale simulation for permeability estimation”, ECMOR XVI, Barcelona, Spain, Dec. 3 (2018) [Google Scholar]
  14. O. Sudakov, E. Burnae and D. Koroteev, “Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks”, Computer and Geosciences, 127, pp. 91-98 (2019) [CrossRef] [Google Scholar]
  15. A. Krizhevsky, I. Sutskever and G.E. Hintonn, “Imagenet classification with deep convolutional neural networks”, Advances in neural information processing systems, 25 (2012) [PubMed] [Google Scholar]
  16. Z. Zhao, P. Zheng, S. Xu and X. Wu., “Object detection with deep learning: A review”, IEEE Transactions on Neural Networks and Learning systems, Apr. 19, arXiv:1807.05511v2 (2018) [Google Scholar]
  17. Y. Guo, Y. Liu, T. Georgiou and M.S. Lew, “A review of semantic segmentation using deep neural networks”, Int. J. of Multimedia Information Retrieval, 7, pp. 87-93 (2018) [CrossRef] [Google Scholar]
  18. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the inception architecture for computer vision”, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2818-2826 (2016) [Google Scholar]
  19. ImageNet. http://www.image-net.org [Google Scholar]
  20. A. Alperovich, O. Johannsen, M. Strecke and B. Goldluecke, “Light field intrinsics with a deep encoder-decoder network”, poster, Proc. CVPR (2018) [Google Scholar]
  21. W. Shi et al., “Real-time single image and video super resolution using an efficient sub-pixel convolutional neural network”, Proc. CVPR, pp. 1874–1883 (2016) [Google Scholar]
  22. A. Alperovich, O. Johannsen and B. Goldluecke, “Intrinsic light field decomposition and disparity estimation with a deep encoder-decoder network”, IEEE European Signal Processing Conf. (2018) [Google Scholar]
  23. S.N. Ehrenberg and P.H. Nadeau, “Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships”, AAPG Bulletin, 89, pp. 435-445 (2005) [Google Scholar]
  24. J. Dautriat, N. Gland, A. Dimanov and J. Raphanel, “Hydromechanical behavior of heterogeneous carbonate rock under proportional triaxial loadings”, J. of Geophysical Research, 116, B01205 (2011) [CrossRef] [Google Scholar]
  25. S. Youssef et al., “High resolution µ-CT combined to numerical models to assess electrical properties of bimodal carbonates”, Int. Symp. Soc. Core Analysts, Abu Dhabi, UAE, Paper SCA2008-37 (2008) [Google Scholar]
  26. T. Bultreys, W. De Boever, L. Van Hoorebeke and V. Cnudde, “A multi-scale image-based pore network modeling approach to simulate two-phase flow in heterogeneous rocks”, Int. Symp. Soc. Core Analysts, St. John’s Newfoundland and Labrador, Canada, Paper SCA2015-027 (2015) [Google Scholar]
  27. H. Derluyn, J. Dewanckele, M.N. Boone, V. Cnudde, D. Derome and J. Carmeliet, “Crystallization of hydrated and anhydrous salts in porous limestone resolved by synchrotron X-ray microtomography”, Nuclear Instruments and Methods in Physics Research, DOI: 5 10.1016/j.nimb.2013.08.065 (2014) [Google Scholar]
  28. S. Roels, J. Elsen, J. Carmeliet and H. Hens, “Characterization of pore structure by combining mercury porosimetry and micrography”, Materials and Structures, 34, pp. 76-82 (2001) [Google Scholar]
  29. T. Bourbié and B. Zinszner, “Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone”, J. of Geophysical Research, 90, pp. 1524-1532 (1985) [Google Scholar]
  30. A. Sinnokrot, H.J. Ramey and S. Marsden, “Effect of temperature level upon capillary pressure curves”, Soc. Petroleum Engineering, 11, pp. 13-22 (1971) [CrossRef] [Google Scholar]
  31. P.L. Churcher, P.R. French, J.C. Shaw and L.L. Schramm, “Rock properties of Berea sandstone, Baker dolomite, and Indiana limestone”, SPE Int. Symp. Oilfield Chemistry, Anaheim, California, Paper SPE-21044-MS, Feb. 20-22 (1991) [Google Scholar]
  32. P.-E. Oren and S. Bakke, “Reconstruction of Berea sandstone and pore-scale modeling of wettability effects”, J. Petroleum Science and Engineering, 39, pp. 177-199 (2003) [CrossRef] [Google Scholar]
  33. S. Youssef, D. Bauer, Y. Peysson and O. Vozoka, “Investigation of pore structure impact on mobilization of trapped oil by surfactant injection”, Int. Symp. Soc. Core Analysts, Avignon, France, Sept. 11-18, Paper SCA2014-64 (2014) [Google Scholar]
  34. N. Saxena, R. Hofmann, F.O. Alpak, J. Dietderich, S. Hunter and R.J. Day-Stirrat, “Effect of image segmentation & voxel size on micro-CT computed effective transport & elastic properties”, Marine and Petroleum Geology, 86, pp. 972-990 (2017) [Google Scholar]
  35. S. Cyprien et al., “The impact of sub-resolution porosity of X-ray microtomography images on the permeability”, Transport in Porous media, 113, pp. 227-243 (2016) [Google Scholar]
  36. O. Rodriguez, T. Porcher, V. Planes, G. Mecuson and R. Bouvier, “Non destructive testing of CMC engine internal parts from X-ray tomographic images”, 9th Int. Conf. Industrial Computed Tomography, Padova, Italy, Feb. 13-15 (2019) [Google Scholar]
  37. A. Krizhevsky, I. Sutskever and G.E. Hinton, “ImageNet classification with deep convolutional neural networks”, Advances in Neural Information Processing Systems, 25, pp. 1097-1105 (2012) [Google Scholar]
  38. F. Chollet et al., https://keras.io (2015) [Google Scholar]
  39. Y. Pu et al., “Adversarial symmetric variational autoencoder”, Advances in Neural Information Processing Systems, 30, pp. 4330-4339 (2017) [Google Scholar]
  40. X.-J. Mao, C. Shen and Y.-B. Yang, “Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections”, Proc. Neural Information Processing Systems, arXiv:1603.09056 (2016) [Google Scholar]
  41. K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”, Proc. Int. Conf. Computer Vision and Pattern Recognition, arXiv:1512.03385 (2016) [Google Scholar]
  42. J. Springenberg, A. Dosovitskiy, T. Brox and M. Riedmiller, “Striving for simplicity: The all convolutional net”, Proc. 3rd Int. Conf. Learning Representations, workshop track (2015) [Google Scholar]
  43. D. Kingma and J. Ba, “Adam a method for stochastic optimization”, Proc. 3rd Int. Conf. Learning Representations (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.