Open Access
Issue
E3S Web Conf.
Volume 146, 2020
The 2019 International Symposium of the Society of Core Analysts (SCA 2019)
Article Number 03002
Number of page(s) 12
Section Improved SCAL Techniques and Interpretation
DOI https://doi.org/10.1051/e3sconf/202014603002
Published online 05 February 2020
  1. C.T. Tsakiroglou, D.G. Avraam, A.C. Payatakes, “Transient and steady-state relative permeabilities from two-phase flow experiments in planar pore networks”, Adv. Wat. Res., vol. 30, pp. 1981–1992, 2007, doi:10.1016/j.advwatres.2007.04.002 [CrossRef] [Google Scholar]
  2. V.R. Guillen et al., “Capillary-driven mobility control in macro emulsion flow in porous media”, Int. J. Multiphase Flow, vol. 43, pp. 62-65, 2012, doi:10.1016/j.ijmultiphaseflow.2012.03.001 [CrossRef] [Google Scholar]
  3. K.T. Tallakstad et al., “Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties”, Phys. Rev. Let., vol. 102, 074502, pp. 1-4, 2009, doi:10.1103/PhysRevLett.102.074502 [CrossRef] [PubMed] [Google Scholar]
  4. A. Georgiadis et al., “Pore-scale micro-computed-tomography imaging: Nonwetting-phase cluster-size distribution during drainage and imbibition”, Phys. Rev. E, vol. 88, 033002, pp. 1-9, 2013, doi:10.1103/PhysRevE.88.033 002 [Google Scholar]
  5. O. Aursjo et al., “Film flow dominated simultaneous flow of two viscous incompressible fluids through a porous medium”, Frontiers in Physics, vol. 2, no. 63, pp. 1-9, 2014, doi:10.3389/fphy.2014.00063 [Google Scholar]
  6. S.S. Datta, T.S. Ramakrishnan, D.A. Weitz, “Mobilization of a trapped non-wetting fluid from a three-dimensional porous medium”, Phys. Fluids, vol. 26, 2014, 022002, 2014, doi:10.1063/1.4866641 [CrossRef] [Google Scholar]
  7. R. Oughanem et al., “A Multi-Scale Investigation of Pore Structure Impact on the Mobilization of Trapped Oil by Surfactant Injection” Transp. Porous Media vol. 109, pp. 673-692, 2015, doi:10.1007/s11242-015-0542-5 [Google Scholar]
  8. R.T. Armstrong, J.E. McClure, M.A. Berrill, M. Rücker, S. Schlüter, S. Berg, “Beyond Darcy’s law: The role of phase topology and ganglion dynamics for two-fluid flow”, Phys. Rev. E, vol. 94, 043113, 2016, doi: 10.1103/PhysRevE.94.043113 [Google Scholar]
  9. M.S. Valavanides, “Review of Steady-State Two-Phase Flow in Porous Media: Independent Variables, Universal Energy Efficiency Map, Critical Flow Conditions, Effective Characterization of Flow and Pore Network”, Transp. in Porous Media, vol. 123, no. 1, pp. 42-99, 2018, doi:10.1007/s11242-018-1026-1 [CrossRef] [Google Scholar]
  10. R.E. Hinkley, M.M. Dias, A.C. Payatakes, “On the motion of oil ganglia in porous media”, PhysicoChemical Hydrodynamics, vol. 8, no.2, pp. 185-211, 1987 [Google Scholar]
  11. S. Sinha et al, “Effective Rheology of Two-Phase Flow in Three-Dimensional Porous Media: Experiment and Simulation”, Transp. in Porous Media, vol. 119, no. 1, pp. 77-94, 2017, doi:10.1007/s11242-017-0874-4 [CrossRef] [Google Scholar]
  12. C.D. Tsakiroglou et al., “Steady-state two-phase relative permeability functions of porous media: A revisit”, Int. J. Multiphase. Flow, vol. 73, pp. 34–42, 2015, doi:10.1016/j.ijmultiphaseflow.2015.03.001 [CrossRef] [Google Scholar]
  13. M.S. Valavanides, “Universal, Flow Dependnet Relative Permeability Scaling for Steady-State Two-Phase Flows in Porous Media”, SCA2018-066, in Int. Symp. of the Society of Core Analysts, Trondheim, Norway, Aug. 27-30, 2018, pp. 1-9 [Google Scholar]
  14. M.S. Valavanides, “Oil Fragmentation, Interfacial Surface Transport and Flow Structure Maps for Two-Phase Flow in Model Pore Networks. Predictions Based on Extensive, DeProF Model Simulations”, Oil Gas Sci. Tech., vol. 73, no.6, pp. 1-36, 2018, doi:10.2516/ogst/2017033 [CrossRef] [Google Scholar]
  15. M.S. Valavanides, E. Totaj, M. Tsokopoulos, “Energy efficiency characteristics in steady-state relative permeability diagrams of two-phase flow in porous media”, J. Pet. Sci. Eng., vol. 147, pp. 181-201, 2016, doi:10.1016/j.petrol.2016.04.039 [Google Scholar]
  16. A. Graue et al, “Imaging Fluid Saturation Development in Long-Core Flood Displacements”, SPE 17438-PA, in Proc. SPE 58th California Regional Meeting, Long Beach, California, 1988, pp. 363-372, doi:10.2118/17438-PA [Google Scholar]
  17. S. Youssef, M. Mascle, O. Vizika., “High Throughput Coreflood Experimentation as a Tool for EOR Project Design”, SPE-190166-MS, in SPE Improved Oil Recovery Conf., Tulsa, Oklahoma, USA, 14-18 April, 2018 [Google Scholar]
  18. E. Unsal, M. Broens, R.T. Armstrong, “Pore Scale Dynamics of Microemulsion Formation”, Langmuir, vol. 32, pp. 7096-7108, 2016, doi: 10.1021/acs.langmuir.6b00821 [CrossRef] [PubMed] [Google Scholar]
  19. S. Cobos, M.S. Carvalho, V. Alvarado, “Flow of oil–water emulsions through a constricted capillary”, Int. J. Multiphase Flow, vol. 35, pp. 507-515, 2009, doi: 10.1016/j.ijmultiphaseflow.2009.02.018 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.