Open Access
E3S Web Conf.
Volume 150, 2020
The Seventh International Congress “Water, Waste and Environment” (EDE7-2019)
Article Number 02003
Number of page(s) 7
Section Waste Treatment and Recovery Channels
Published online 12 February 2020
  1. A. El Barnossi, F. Moussaid, H.A. Iraqi, Decomposition of tangerine and pomegranate wastes in water and soil: characterization of physicochemical parameters and global microbial activities under laboratory conditions. Int. J. Environ. Stud 76(3), 456–470 (2019). [Google Scholar]
  2. H.I. Abdel-Shafy, M.S.M. Mansour, Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet 27(4), 1275–1290 (2018). [CrossRef] [Google Scholar]
  3. A. Cesaro, A. Conte, V. Belgiorno, A. Siciliano, M. Guida, The evolution of compost stability and maturity during the full-scale traetement of the organic fraction of municipal solid waste. J. Environ. Manage 232, 264-270 (2019). [Google Scholar]
  4. E. Loginova, D.S. Volkov, P.M.F. Van de Wouw, M.V.A. Florea, H.J.H. Brouwers, Detailed characterization of particle size fractions of municipal solid waste incineration bottom ash. J. clean. prod 207, 866–874 (2019). [Google Scholar]
  5. X. Shan, H. Peng, X. Ling, J. Li, Experimental investigation on particles characteristics in molten aluminum ligament granulation for waste energy recovery. Energy Procedia 158, 4459–4464 (2019). [Google Scholar]
  6. B. Tao, A.M. Alessi, Y. Zhang, J.P. Chong, S. Heaven, J. Banks, Simultaeous biomethanisation of engogenous and imported CO2 in organically loaded anaerobic digesters. Appl. Energ 247, 670–681(2019). [CrossRef] [Google Scholar]
  7. J. Tian, Y. Wang, H. Zeng, Z. Li, P. Zhang, A. Tessema, X. Peng, Efficacy and possible mechanisms of perillaldehyde in control of Aspergillus niger causing grape decay. Int. J. Food Microbiol 202, 27–34 (2015). [CrossRef] [PubMed] [Google Scholar]
  8. Q. Li, C. Li, P. Li, H. Zhang, X. Zheng, Q. Yang, M.T. Apaliya, B. Nana, A. Serwah, Y. Sun, The biocontrol effect of Sporidiobolus pararoseus Y16 against postharvest diseases in table grapes caused by Aspergillus niger and the possible mechanisms involved. Biol.Control 113, 18–25(2017). [CrossRef] [Google Scholar]
  9. N. Sonker, A.K. Pandey, P. Singh, N.N. Tripathi, Assessment of Cymbopogon citratus (DC) Stapf essential oil as herbal preservatives based on antifungal, antiaflatoxin, and antiochratoxin activities and in vivo efficacy during storage. J. Food Sci 79, 628–634 (2014). [Google Scholar]
  10. L. Tabti, M.E. Dib, N. Djabou, N.G. Benyelles, J. Paolini, J. Costa, A. Muselli, Control of fungal pathogens of Citrus sinensis L. by essential oil and hydrosol of Thymus capitatus L. J. Appl. Bot.Food. Qual 87, 279–285 (2014). [Google Scholar]
  11. A. Erdogan, S.S. Rao, Small intestinal fungal overgrowth. Curr. Gastroenterol. Rep 17(4), 16 (2015). [CrossRef] [PubMed] [Google Scholar]
  12. Z.L. Xu, S.R. Li, L. Fu, L. Zheng, J. Ye, J.B. Li, Candida albicans. -induced acute lung injury through activating several inflammatory signaling pathways in mice Int. Immunopharmacol 72, 275–283 (2019). [Google Scholar]
  13. K. Xu, L. Wang, M.P. Chu, C. Jia, L. Wang, M.P. Chu, C. Jia, Activity of coumarin against Candida albicans biofilms. J. Mycol. Med 29(1), 28–34 (2018). [CrossRef] [PubMed] [Google Scholar]
  14. H. Kim, S.S. Kang, Antifungal activities against Candida albicans, of cell-free supernatants obtained from probiotic Pediococcus acidilactici HW01. Arch. Oral. Biol 99, 113–119 (2019). [CrossRef] [PubMed] [Google Scholar]
  15. V.H. Matsubara, H.M. Bandara, M.P. Mayer, L.P. Samaranayake, Probiotics as antifungals in mucosal candidiasis. Clin. Infect. Dis 62, 1143–1153 (2016). [CrossRef] [PubMed] [Google Scholar]
  16. F.A. Mustapha, J. Jai, N.H. Raikhan, Z.I.M. Sharif, N.M. Yusof, Response surface methodology analysis towards biodegradability and antimicrobial activity of biopolymer film containing turmeric oil against Aspergillus niger. Food Control 99, 106–113(2019). [Google Scholar]
  17. P. An, X. Yang, J. Yu, J. Qi, X. Ren, Q. Kong, α-terpineol and terpene-4-ol, the critical components of tea tree oil, exert antifungal activities in vitro and in vivo against Aspergillusniger in grapes by inducing morphous damage and metabolic changes of fungus. Food Control 98, 42–53(2019). [Google Scholar]
  18. D. Devipriya, S.M. Roopan, Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus. Mater. Sci. Eng 80, 38–44 (2017). [CrossRef] [Google Scholar]
  19. M. Balouiri, S. Bouhdid, E.H. Harki, M. Sadiki, W. Ouedrhiri, S.k. Ibnsouda, Antifungal activity of Bacillus spp. Isolated from Calotropis Procera Ait. Rhizosphere against Candida albicans. Asian. J. Pharm. Clin. Res 8(2), 213–217 (2015). [Google Scholar]
  20. A. Chauthan, J. Gruenberg, S. Arbefeville, T. Mettler, H.C. Brent, P. Ferrieri, Disseminated Hormgraphiella aspergillata Infection with Lung and Brain Involvement after Allogenic Hematopoietic Stem-Cell Transplantation in a 54-Year-Old Man. Lab. Med 1–6 (2019). Doi: 10.1093/labmed/lmz018. [Google Scholar]
  21. V. Gupta, K. Abhisheik, S. Balasundari, K.N. Devendra, K. Shadab, M. Anupama, Identification of Candida albicans using different culture media and its association in leukoplakia and oral squamoud cell carcinoma. J. oral. Maxillofac.Pathol 23(1), 28–35 (2019). [CrossRef] [Google Scholar]
  22. J. Pochon, P. Tardieux, Techniques d’analyse en microbiologie du sol (Saint Mandé: Edition de la Tourelle), 111p (1962). [Google Scholar]
  23. D. Ibrahim, C.C. Lee, Sheh-Hong L. Antimicrobial activity of endophytic fungi isolated from Swietenia macrophylla leaves. Nat. Prod. Commun 9(2), 247–250 (2014). [Google Scholar]
  24. E. Pereira, A. Santos, F. Reis, R.M. Tavares, P. Baptistaa, T. Lino-Netoc, C. Almeida-Aguiar, A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiol. Res 168, 1–5 (2013). [CrossRef] [PubMed] [Google Scholar]
  25. F. Moussaid, A. El Barnossi, N. Chahmi, A. Iraqi Housseini,Screening and selection of new microbial anti- candidiasis. Mater.Today. Proc 13(3), 1049–1054 (2019). [CrossRef] [Google Scholar]
  26. J.A. Elegbede, A. Lateef, M.A. Azeez, T.B. Asafa, T.A. Yekeen, I.C. Oladipo, A.S. Hakeem, E.B. Gueguim-Kana, Silver- gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities. Biotechnol.Prog(2019). Doi: org/10.1002/btpr.2829. [Google Scholar]
  27. M. Gajbhiye, J. Kesharwani, A. Ingle, A. Gade, M. Rai, Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4), 382‑386 (2009). [CrossRef] [PubMed] [Google Scholar]
  28. T.A. Bamidele, B.A. Adeniyi, S.I. Smith, In viro, acidic, non- proteinaceous antifungal activities of lactic acid bacteria isolated from salad vegetables against human pathogenic Candida albicans. Africain. J. Clin. Exper. Microbiol 20(2), 137–42 (2019). [CrossRef] [Google Scholar]
  29. N.A. Logan, R.C. Berkeley, Identification of Bacillus strains using the API system. J. Gen. Microbiol 130(7), 1871–1882 (1984). [PubMed] [Google Scholar]
  30. K.H. Schleifer, Phylum III. Firmicutes Gibbons and Murry 1978, 5 Bergey’s. Manual of Systematic Bacteriology, eds Vos P, et al. (Springer, New York), pp 19–1317 (2009). [CrossRef] [Google Scholar]
  31. S. Bouhairi, Bacillus subtilis: characterization and application. Doctoral thesis, Mohamed V University, Faculty of Medicine and Pharmacy, Rabat, Morocco, thesis No. 24. pp. 11–17/134 (2017). [Google Scholar]
  32. Y.B. Bulgasem, M.N. Lani, Z. Hassan, W.M. Wan Yusoff, S.G. Fnaish, Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species. Mycobiology 44(4), 302–309 (2016). [Google Scholar]
  33. S.P. Pudake, D.G. Hingole, P.H. Ghante, P.B. Khaire, C.S. Swami, In-vitro evaluation of Phyto-extracts and bioagent against Aspergillus niger. Int. J. Chem. Stud 7(2), 434–438 (2019). [Google Scholar]
  34. A. Kumar, P. Saini, J.N. Shrivastava, Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Indian. J. Exp. Biol 47(1), 57–62 (2009). [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.