Open Access
E3S Web Conf.
Volume 158, 2020
2019 7th International Conference on Environment Pollution and Prevention (ICEPP 2019)
Article Number 05004
Number of page(s) 6
Section Environmental Detection
Published online 23 March 2020
  1. Bilos, C., Colombo, J.C., Skorupka, C.N., Rodriguez Presa, M.J., (2001). Sources, distribution and variability of air borne trace metals in LaPlata City area, Argentina. Environ. Pollut. 111, 149–158. [Google Scholar]
  2. Manno, E., Varrica, D., Dongarrà, G., (2006). Metal distribution in road dust samples collected in an urban area close to petrochemical plant at Gela, Sicily. Atmos. Environ. 40, 5929–5941. [Google Scholar]
  3. Leopold E., Jung M., Auguste O., Ngatcha N., Georges E., Lape M. (2008). Metals pollution in freshly deposited sediments from river Mingoa, main tributary to the Municipal lake of Yaounde, Cameroon. Geos J 12:337–347. [CrossRef] [Google Scholar]
  4. Huang J. (2016). Integrating hierarchical bioavailability and population distribution into potential eco-risk assessment of heavy metals in road dust: a case study in Xiandao District, Changsha city, China. Science of The Total Environment 541: 969-976. [CrossRef] [Google Scholar]
  5. Liu, A., Liu, L., Li, D.Z., Guan, Y.T., 2015. Characterizing heavy metal build-up on urban road surfaces: implication for storm water reuse. Sci. Total Environ. 515-516, 20–29. [CrossRef] [PubMed] [Google Scholar]
  6. Shi, G.T., Chen, Z.L., Xu, S.Y., Zhang, J., Wang, L., Bi, C.J., Teng, J.Y., 2008. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 156,251–260. [Google Scholar]
  7. Wei, B.G., Yang, L.S., 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 94, 99–107. [Google Scholar]
  8. Pan, H. Lu, X. Lei, K. (2017). A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Science of the Total Environment. 609: 1361–1369. [CrossRef] [PubMed] [Google Scholar]
  9. Ruby, M.V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D.E., Casteel, S.W., Berti, W., Carpenter, M., Edwards, D., Cragin, D., and Chappell, W. (1999). A dvances in evaluating the oral bio- availability of inorganics in soil for use in human health risk assessment. Environ. Sci. Technol. 33:3697–3705. [Google Scholar]
  10. Schroder, J., Basta, N., Casteel, S., Evans, T., Payton, M., Si, J., (2004). Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils. J Environ Qual 33, 513-521. [CrossRef] [PubMed] [Google Scholar]
  11. Trujillo-González, J.M., Torres-Mora, M.A., Keesstra, S., Brevik, E.C., Jiménez-Ballesta, R. (2016). Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of the Total Environment 553: 636–642. [CrossRef] [Google Scholar]
  12. Charlesworth, S., Everett, M., McCarthy, R., Ordonez, A., DeMiguel, E., (2003). A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 29 (5), 563–573. [Google Scholar]
  13. Karimi, N., Ghaderian, S.M., Maroofi, H., Schat, H., (2009). Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. Int. j. phytoremediat. 12 (2), 159-173. [CrossRef] [Google Scholar]
  14. Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Sumner, M.E., (1996). Methods of soil analysis. Part 3-Chemical methods. Soil Science Society of America Inc. [Google Scholar]
  15. Han, Y.M., PX, Du, Cao, J.J., Posmentier, E.S., (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 355, 176–186. [CrossRef] [PubMed] [Google Scholar]
  16. Li, H.H., Chen, L.J., Yu, L., Guo, Z.B., Shan, C.Q., Lin, J.Q., et al., (2017). Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci. Total Environ. 586: 1076–1084. [CrossRef] [Google Scholar]
  17. Karanasiou, A.A., Siskos, P.A., Eleftheriadis, K., (2009). Assessment of source apportionment by positive matrix factorization analysis on fine and coarse urban aerosol size fractions. Atmos. Environ. 43 (21), 3385–3395. [Google Scholar]
  18. Abed S. Ali et al 2019 J. Phys.: Conf. Ser. 1294 072025. [CrossRef] [Google Scholar]
  19. Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Water Footprint of Wheat in Iraq. Water 2019, 11, 535. [Google Scholar]
  20. Athanasopoulou, E., Tombrou, M., Russell, A.G., Karanasiou, A., Eleftheriadis, K., Dandou, A., (2010). Implementation of road and soil dust emission parameterizations in the aerosol model CAMx: applications over the greater Athens urban area affected by natural sources. J. Geophys. Res. 115, D17301. [Google Scholar]
  21. Kadhim J.L. Al-Zaidy et al 2019 J. Phys.: Conf. Ser. 1294 072021. [CrossRef] [Google Scholar]
  22. Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Crop Water Requirements and Irrigation Schedules for Some Major Crops in Southern Iraq. Water 2019, 11, 756. [Google Scholar]
  23. Kamani, H., Mahvi, A.H., Seyedsalehi, M., Jaafari, J., Hoseini, M., Safari, G.H., Dalvand, A., Aslani, H., Mirzaei, N., Ashrafi, S.,D. (2017). Contamination and ecological risk assessment of heavy metals in street dust of Tehran, Iran. Int. J. Environ. Sci. Technol. 14 (12) 2675–2682. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.