Open Access
Issue
E3S Web Conf.
Volume 161, 2020
International Conference on Efficient Production and Processing (ICEPP-2020)
Article Number 01031
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202016101031
Published online 15 April 2020
  1. S.E. Terentyev, et al., Yields of new varieties of cereals depending on the level of mineral nutrition, Grain Industry of Russia, 3, 60-63 (2012). [Google Scholar]
  2. I.N. Romanova, et al., Yields of cereals and the level of soil fertility depending on the application of mineral fertilizers, soil type in the crop rotation system, Grain Industry of Russia, 2, 44, 57-60 (2016). [Google Scholar]
  3. S.A. Guchanov, O.V. Melnikova, V.E. Torikov, Yield and grain quality triticale winter depending on elements of cultivation technology, Herald of the Kursk State Agricultural Academy, 4, 90-95 (2018). [Google Scholar]
  4. I.N. Romanova, et al., Ways to increase the yield and quality of grain with winter triticale of Consul variety, Herald of Bashkir State Agricultural University, 1, 49, 37-41 (2019). [Google Scholar]
  5. N.N. Semenenko, I.I. Vaga, Effect of hydrothermal conditions of growth and development on the yield of winter triticale, Melioration, 2, 66, 137-144 (2011). [Google Scholar]
  6. I.N. Romanova, et al., Productivity of varieties of grain crops depending on the mineral nutrition backgrounds, Grain Industry of Russia, 2, 37-43 (2012). [Google Scholar]
  7. O.S. Tikhonova, I.S. Fatykhov, Effect of the rate of seeding on the quality of grain of winter cereals in the Middle Pre-Ural, Herald of Bashkir State Agricultural University, 4, 24, 14-16 (2012). [Google Scholar]
  8. V.E. Torikov, et al., Comparative characteristics of the quality of the grains of winter triticale varieties grown in southwest Russia, Herald of the Altai State Agricultural University, 2, 172, 49-56 (2019). [Google Scholar]
  9. A.G. Nikiforov, et al., Using neural network modeling to calculate the energy characteristics of a centrifugal compressor, Compressor Equipment and Pneumatics, 3, 18-21 (2015). [Google Scholar]
  10. A. Nikiforov, A. Kuchumov, S. Terentev, E. Petukhov, K. Kabalyk, Simulation of gas-dynamic characteristics of a centrifugal compressor vane diffuser using neural networks, International Scientific Conference on Energy, Environmental and Construction Engineering, EECE-2019, E3S Web of Conferences, 140, 05003 (2019). DOI: 10.1051/e3sconf/201914005003. [CrossRef] [EDP Sciences] [Google Scholar]
  11. A. Nikiforov, D. Avramenko, A. Kuchumov, S. Terentev, A network application for modeling a centrifugal compressor performance map, 11th International Conference on Compressors and their Systems,London, UK, IOP Conf. Series: Materials Science and Engineering, 604, 012046 (2019). DOI:10.1088/1757-899X/604/1/020. [Google Scholar]
  12. L.N. Yasnitsky, Intelligent Systems (Knowledge Laboratory, Moscow, 221, 2016). [Google Scholar]
  13. V.P. Shkodyrev, et al., Review of methods for detecting anomalies in data streams, Proc. of the Second Conferenceon Software Engineeringand Information Management, St.Petersburg, Russia, 1864, 7 (2017). [Google Scholar]
  14. T. Jayalakshmi, Dr.A. Santhakumaran, Statistical normalization and back propagation for classification, International Journal of Computer Theory and Engineering, 3, 1, 89-93 (2011). [CrossRef] [Google Scholar]
  15. E.S. Ogasawara, L.C. Martinez, D. de Oliveira, G. Zimbrão, G.L. Pappa, M. Mattoso, Adaptive normalization: a novel data normalization approach for non-stationary time series, The 2010 International Joint Conference on Neural Networks, IJCNN (July 2010). DOI: 10.1109/IJCNN.2010.5596746. [Google Scholar]
  16. S.C. Nayak, B.B. Misra, H.S. Behera, Impact of data normalization on stock index forecasting, International Journal of Computer Information Systems and Industrial Management Applications, 6, 257-269 (2014). [Google Scholar]
  17. S. Osovsky, Neural Networks for Information Processing, trans. from Polish by I.D. Rudinsky (Finance and Statistics, Moscow, 334, 2002). [Google Scholar]
  18. V.V. Kruglov, M.I. Dli, R.J. Golunov, Fuzzy Logic and Artificial Neural Networks (Publishing House for Literature on Physics and Mathematics, Moscow, 224, 2001). [Google Scholar]
  19. V.V. Borisov, V.V. Kruglov, A.S. Fedulov, Fuzzy Models and Networks (Hotline-Telecom, Moscow, 284, 2016). [Google Scholar]
  20. V.S. Medvedev, V.G. Potemkin, Neural Networks. MATLAB 6 (DIALOGUE-MIFI, Moscow, 496, 2002). [Google Scholar]
  21. V.V. Borisov, A.S. Fedulov, M.M. Zernov, Basics Hybridization of Fuzzy Models (Hotline-Telecom, Moscow, 100, 2017). [Google Scholar]
  22. A.G. Nikiforov, D.Y. Avramenko, Preparation of experimental data for neural network modeling of characteristics of centrifugal compressors, Scientific and Technical Records of SPBPU, Natural and engineering sciences, 24, 4, 61-71 (2018). DOI: 10.18721/JEST.24406. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.