Open Access
Issue
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 01007
Number of page(s) 9
Section Sustainable Environment and Environmental Management
DOI https://doi.org/10.1051/e3sconf/202016601007
Published online 22 April 2020
  1. M. Ahmad, S.S. Lee, S.E. Lee, M.I. Al-Wabel, D.C.W. Tsang, Y.S. Ok, Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J. Soils Sediment. 17, 717–730 (2017). doi:10.1007/s11368-015-1339-4 [CrossRef] [Google Scholar]
  2. R. Alexakhin, S. Firsakova, G. Rauret, N. Arkhipov, Fluxes of radionuclides in agricultural environments: main results and still unsolved problems, in Abstract of the 1st International conference “The radiological consequences of the Chernobyl accident”, vol. 1 (1996), pp. 39–47 [Google Scholar]
  3. A.Z. Al-Hamdan, K.R. Reddy, Transient behavior of heavy metals in soils during electrokinetic remediation. Chemosphere 71, 860–871 (2008). doi:10.1016/j.chemosphere.2007.11.028 [Google Scholar]
  4. H. Ali, E. Khan, M.A. Sajad, Phytoremediation of heavy metals – concepts and applications. Chemosphere 91, 869–881 (2013). doi:10.1016/j.chemosphere.2013.01.075 [Google Scholar]
  5. B.J. Alloway, Heavy metal in soil (Blackie Academic & Professional, London, 1994) [Google Scholar]
  6. M.A. Ashraf, I. Hussain, R. Rasheed, M. Iqbal, M. Riaz, A.M. Saleem, Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. J. Environ. Manage 198, 132–143 (2017). doi:10.1016/j.jenvman.2017.04.060 0301-479 [Google Scholar]
  7. S. Askbrant, J. Melin, J. Sandalls, R. Vallejo, T. Hinton, A. Cremers, C. Vandecasteele, N. Lewyckyj, Yu. Ivanov, S. Firsakova, N. Arkhipov, R. Alexakhin, Mobility of radionuclides in undisturbed and cultivated soils in Ukraine, Belarus and Russia six years after the Chemobyl fallout. J. Environ Radioact. 31(3), 287–312 (1996) [Google Scholar]
  8. A. Aysen, Problem solving in soil mechanics (Swets & Zeitlinger, Lisse, 2003). [Google Scholar]
  9. J. Bell, T.H. Bates, Distribution coefficients of radionuclides between soils and groundwater’s and their dependence test parameters. Sci. Total. Environ. 69, 297–317 (1998) [Google Scholar]
  10. N. Bolan, A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, T. Makino, M. B. Kirkham, K. Scheckel, Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J. Hazard. Mater. 266, 141–166 (2014). doi:10.1016/jhazmat.2013.12.018 [CrossRef] [Google Scholar]
  11. D.A. Cafaldo, M. Fadden, T.R. Larland, Radionuclide complexation in soils and plants. Special. Fission. and Activ. Prod. Environ. Proc. 85, 398–408 (1986) [Google Scholar]
  12. H.D. Foth, Fundamentals of soil science (John Wiley & Sons Inc, New York, 1991) [Google Scholar]
  13. C. Garbisu, I. Alkorta, Basic concepts on heavy metal soil bioremediation: review. The European journal of mineral processing and environmental protection 3(1), 58–66 (2003) [Google Scholar]
  14. K.K. Gedroyts, Selected scientific works (Science, Moscow, 1975) [Google Scholar]
  15. M.H. Gerzabek, Wir verhalten sich radioaktive Stoffe im Boden? Agrozucker 4, 9–10 (1996) [Google Scholar]
  16. M.H. Gerzabek, S.A. Mohamad, K. Muck, Cesium137 in soil texture fractions and impact on cesium137 soil-to-plant transfer. Commun. Soil Sci. Plant. Anal. 23, 321–330 (1992) [Google Scholar]
  17. Guidelines for agricultural countermeasures following an accidental release of radionuclides. Technical reports series No. 363 (International Atomic Energy Agency, Vienna, 1994) [Google Scholar]
  18. K. Harmsen, Behavior of heavy metals in soils (Centre for Agriculture Publishing and Documentation, Wageningen, 1977) [Google Scholar]
  19. H. Hu, Q. Jin, Ph. Kavan, A study of heavy metal pollution in China: current status, pollution-control policies and countermeasures. Sustainability 6, 5820–5838 (2014). doi:10.3390/su6095820 [Google Scholar]
  20. A. Kabata-Pendias, Trace elements in soils and plants (Taylor and Francis Group, Roca Raton, 2011) [Google Scholar]
  21. J. Kiepul, J. Sieukiewicz, Pobieranie 90Sr i 137Cs przez niektore rosliny ukrawne z gleb o roznym skladzie mechanicznym. Pamietnik Pulaw 83, 105–115 (1994) [Google Scholar]
  22. W. Kuhn, I. Handl, P. Schuller, The influence of soil parameters on 137Cs uptake by plants from long-term fallout on forest clearings and grassland. Health Physics 46(5), 1083–1093 (1984) [CrossRef] [PubMed] [Google Scholar]
  23. M. Lu, Z.-Z. Zhang, Phytoremediation of soil cocontaminated with heavy metals and deca-BDE by co-planting of Sedum alfredii with tall fescue associated with Bacillus cereus. Plant Soil 382 (1-2), 89–102 (2014). doi:10.1007/s11104-014-2147-0 [Google Scholar]
  24. A. Mahar, P. Wang, R. Li, Z. Zhang, Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere 25(4), 555–568 (2015) [Google Scholar]
  25. M.M. Mikha, J.G. Benjamin, P.W. Stahlman, P.W.I. Geier, Remediation/restoration of degraded soil: I. impact on soil chemical properties. Agron. J. 106, 252–260 (2014). doi:10.2134/agronj2013.0278 [Google Scholar]
  26. J. Paz-Ferreiro, H. Lu, S. Fu, A. Méndez, G. Gascó, Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5, 65–75, (2014). doi:10.5194/se-5-65-2014 [CrossRef] [Google Scholar]
  27. A.G. Podolyak, S. Tagai, E. Nilova, V. Averin, Assessment of committed doses received by agricultural workers in grain harvesting operations in the areas of radioactive contamination. Radioprotection 52 (1), 37–43 (2017). doi:10.1051/radiopro/2017001 [Google Scholar]
  28. A.G. Podolyak, A.F. Karpenko, Copper in arable and meadow soils of Gomel region. Ecological Bulletin of Kryvyi Rih District 4, 56–66 (2019). doi:10.31812/eco-bulletin-krd.v4i0.2560 [Google Scholar]
  29. V.M. Savosko, Land melioration and phytorecultivation (Dionat, Kryvyi Rih, 2011) [Google Scholar]
  30. V.M. Savosko, Heavy Metals in Soils at Kryvbas (Dionat, Kryvyi Rih, 2016) [Google Scholar]
  31. T. Sawidis, Uptake of radionuclides by plants after the Chernobyl accident. Environ. Pollut. 50(4), 317–324 (1988) [Google Scholar]
  32. H.M. Selim, D.L. Sparks (eds.), Heavy metals release in soils (Lewis Publishers, Boca Raton, 2001) [CrossRef] [Google Scholar]
  33. D.L. Sparks (ed.), Soil physical chemistry (CRC, Boca Raton, 1999) [Google Scholar]
  34. D.L. Sparks, Environmental soil chemistry (Elsevier Science, San Diego, 2003) [Google Scholar]
  35. G. Sposito, The chemistry of soils (Oxford University Press, New York, 2008) [Google Scholar]
  36. W. Steffens, W. Mittelsstaedt, G. Klaes, F. Fuhr, Radionuclide transfer of 90Sr, 137Cs, 60Co and 54Mn, to plants grown on soils with different physical and chemical properties and from different sites at Eschweilv, in Abstract of the 6th International congress “Radiation, risk, protection”, 1984, ed. by A. Kaul et al., vol. 1, pp. 193–196 [Google Scholar]
  37. C. Su, L.Q. Jiang, W.J. Zhang, A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ. Skep. Crit. 3(2), 24–38 (2014) [Google Scholar]
  38. T. Szabova, S. Bartha, Stanovenie prechodovych koeficientov pre stroncium v systeme voda-roslina v localitach vystavby. Radioactiv. Zivot. Presorted. 8(1), 17-32 (1985) [Google Scholar]
  39. N.V. Timofeev-Resovsky, V.I. Ivanov, V.I. Korogodin, Application of the hit principle in radiobiology (Atomizdat, Moscow, 1968) [Google Scholar]
  40. N.V. Timofeev-Resovsky, A.V. Savich, M.I. Shalnov, Introduction to molecular radiobiology (Medicine, Moscow, 1981) [Google Scholar]
  41. M. Vidal, M. Campas, N. Grebenshikova, N. Sanzharova, Y. Ivanov, A. Rigol, S. Firsakova, S. Fesenko, S. Levchuk, T. Sauras, A. Podolyak, G. Rauret, Effectiveness of agricultural practices in decreasing radionuclide transfer to plants in natural meado. Radiat. Prot. Dosim. 92 (1–3), 65–70 (2000) [CrossRef] [Google Scholar]
  42. M.H. Wong, Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6), 775–780 (2003). doi:10.1016/s0045-6535(02)00232-1 [Google Scholar]
  43. M. Zacchini, F. Pietrini, G. S. Mugnozza, V. Iori, L. Pietrosanti, A. Massacci, Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 197, 23–34 (2009). doi:10.1007/s11270-008-9788-7 [Google Scholar]
  44. S. Zaidi, S. Usmani, B. R. Singh, J. Musarrat, Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64, 991–997 (2006). doi:10.1016/j.chemosphere.2005.12.057 [Google Scholar]
  45. J. Zhang, J. Liu, R. Liu, Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 176, 288–291 (2015). doi:10.1016/j.biortech.2014.11.011 [Google Scholar]
  46. S. Zhang, M. Chen, T. Li, X. Xu, L. Deng, A newly found cadmium accumulator – Malva sinensis. Cavan. J. Hazard. Mater. 173, 705–709 (2010). doi:10.1016/j.jhazmat.2009.08.142 [CrossRef] [Google Scholar]
  47. F. Zhao, E. Lombi, S. McGrath, Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil. 249(1), 37–43 (2003). doi:10.1023/A:1022530217289 [Google Scholar]
  48. R.L. Zheng, C. Cai, J.H. Liang, Q. Huang, Z. Chen, Y.Z. Huang, H.P.H. Arp, G.X. Sun, The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 89, 856–863 (2012). doi:10.1016/j.chemosphere.2012.05.008 [Google Scholar]
  49. Q.X. Zhou, S. Cui, S.H. Wei, W. Zhang, L. Cao, L.P. Ren, Effects of exogenous chelators on phytoavailability and toxicity of Pb in Zinnia elegans Jacq. J. Hazard. Mater. 146, 341–346, (2007). doi:10.1016/j.jhazmat.2006.12.028 [Google Scholar]
  50. F. Zojaji, A.H. Hassani, M.H. Sayadi, Bioaccumulation of chromium by Zea mays in wastewater-irrigated soil: An experimental study. Proc. Int. Acad. Ecol. Environ. Sci. 4(2), 62–67 (2014) [Google Scholar]
  51. M. Zubair, M. Shakir, Q. Ali, N. Rani, N. Fatima, S. Farooq, S. Shafiq, N. Kanwal, F. Ali, I.A. Nasir, Rhizobacteria and phytoremediation of heavy metals. Environ. Technol. Rev. 5, 112–119 (2016). doi:10.1080/ 21622515.2016.1259358 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.