Open Access
Issue
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 01008
Number of page(s) 10
Section Sustainable Environment and Environmental Management
DOI https://doi.org/10.1051/e3sconf/202016601008
Published online 22 April 2020
  1. B.W. Jaskula, in Mineral Commodity Summaries 2019, ed. by USGS (Reston, Virginia, 2019), p. 62 [Google Scholar]
  2. F. Mathieux, F. Ardente, S. Bobba, P. Nuss, G. Blengini, P. Alves-Dias, D. Blagoeva, C. Torres-DeMatos, D. Wittmer, C. Pavel, T. Hamor, H. Saveyn, B. Gawlik, G. Orveillon, D. Huygens, E. Garbarino, E. Tzimas, F. Bouraoui, S. Solar, Critical raw materials and the circular economy – background report (Publications Office of the European Union, Luxembourg, 2017), pp. 39-40. [Google Scholar]
  3. C.S. Anderson, in Mineral Commodity Summaries 2019, ed. by USGS (Reston, Virginia, 2019), p. 78 [Google Scholar]
  4. European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 list of Critical Raw Materials for the EU. (COM(2017) 490 final, 2017) [Google Scholar]
  5. The U.S. Department of the Interior, Final List of Critical Minerals 2018 (Federal Register 83 (97) 2018) [Google Scholar]
  6. NIOSH Publications, NIOSH Pocket Guide to Chemical Hazards (Cincinnati, Ohio, 2007) [Google Scholar]
  7. World Health Organization, WHO Air Quality Guidelines-Global Update 2005 (Copenhagen, 2006) [Google Scholar]
  8. Right to know, Hazardous Substance Fact Sheet, Hydrogen (2016), https://nj.gov/health/eoh/rtkweb/documents/fs/1010.pdf. Accessed 06 Dec 2019 [Google Scholar]
  9. A. Mirzaei, S. Park, G. J. Sun, H. Kheel, C. Lee, CO gas sensing properties of In4Sn3O12 and TeO2 composite nanoparticle sensors. J. Hazard. Mater. 305, 130–138 (2016). doi:10.1016/j.jhazmat.2015.11.044 [Google Scholar]
  10. B. Xiao, S. Song, P. Wang, Q. Zhao, M. Chuai, M. Zhang, Promoting effects of Ag on In2O3 nanospheres of sub-ppb NO2 detection. Sensor. Actuat. B-Chem. 241, 489–497 (2017). doi:10.1016/j.snb.2016.10.107 [CrossRef] [Google Scholar]
  11. S. Li, M. Cheng, G. Liu, L. Zhao, B. Zhang, Y. Gao, H. Lu, H. Wang, J. Zhao, F. Liu, X. Yan, T. Zhang, G. Lu, High-response and low-temperature nitrogen dioxide gas sensor based on gold-loaded mesoporous indium trioxide. J. Colloid. Interf. Sci. 524, 368–378 (2018). doi:10.1016/j.jcis.2018.04.033 [CrossRef] [Google Scholar]
  12. X. Liu, L. Jiang, X. Jiang, X. Tian, Y. Huang, P. Hou, S. Zhang, X. Xu, Design of superior ethanol gas sensor based on indium oxide/molybdenum disulfide nanocomposite via hydrothermal route. Appl. Surf. Sci. 447, 49–56 (2018). doi:10.1016/j.apsusc. 2018.03.116 [Google Scholar]
  13. H. Ma, Y. Lu, X. Yuan, Y. Li, C. Li, M. Yin, X. Fan, Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures. J. Alloy. Compd. 782, 1121–1126 (2019). doi:10.1016/j.jallcom.2018.12.180 [CrossRef] [Google Scholar]
  14. J. Shruthi, N. Jayababu, P. Ghosal, M.V.R. Reddy, Ultrasensitive sensor based on Y2O3-In2O3 nanocomposites for the detection of methanol at room temperature. Ceram. Int. 45, 21497–21504 (2019). doi:10.1016/j.ceramint. 2019.07.141 [Google Scholar]
  15. M. Reddeppa, S.B. Mitta, T. Chandrakalavathi, B.G. Park, G. Murali, R. Jeyalakshmi, S.G. Kim, S.H. Park, M.D. Kim, Solution-processed Au@rGO/GaN nanorods hybrid-structure for self-powered UV, visible photodetector and CO gas sensors. Curr. Appl. Phys. 19, 938–945 (2019). doi:10.1016/j.cap.2019.05.008 [Google Scholar]
  16. K.G. Girija, K. Somasundaram, A.K. Debnath, A. Topkar, R. Vats, Enhanced H2S sensing properties of Gallium doped ZnO nanocrystalline films as investigated by DC conductivity and impedance spectroscopy. Mater. Chem. Phys. 214, 297–305 (2018). doi:10.1016/j.matchemphys.2018.04.104 [Google Scholar]
  17. Y. Gong, X. Wu, X. Zhou X. Li, N. Han, Y. Chen, High acetone sensitive and reversible Pto N-type switching NO2 sensing properties of Pt@Ga-ZnO core-shell nanoparticles. Sensor. Actuat. B-Chem. 289, 114–123 (2019). doi:10.1016/j.snb.2019.03.085 [CrossRef] [Google Scholar]
  18. J. Wang, S. Jiang, H. Liu, S. Wang, Q. Pan, Y. Yin, G. Zhang, Ptype gas-sensing behavior of Ga2O3/Al2O3nanocomposite with high sensitivity to NOxat room temperature. J. Alloy. Compd. 814 (2020). doi:10.1016/j.jallcom.2019.152284 [Google Scholar]
  19. N. Singh, C. Yan, P. S. Lee, Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors. Sensor. Actuat. B-Chem. 150, 19–24 (2010). doi:10.1016/j.snb.2010.07.051 [CrossRef] [Google Scholar]
  20. D. Zhang, J. Wu, Y. Cao, Cobalt-doped indium oxide/molybdenum disulfide ternary nanocomposite toward carbon monoxide gas sensing. J. Alloy. Compd. 777, 443–453 (2019). doi:10.1016/j.jallcom.2018.10.365 [CrossRef] [Google Scholar]
  21. R. Dhahri, M. Hjiri, L.E. Mir, H. Alamri, A. Bonavita, D. Iannazzo, S.G. Leonardi, G. Neri, CO sensing characteristics of In-doped ZnO semiconductor nanoparticles. J. Sci. Adv. Mater. Devices 2, 34–40 (2017). doi:10.1016/j.jsamd.2017.01.003 [CrossRef] [Google Scholar]
  22. K. Inyawilert, A. Wisitsoraat, C. Liewhiran, A. Tuantranont, S. Phanichphant, H2 gas sensor based on PdOx-doped In2O3 nanoparticles synthesized by flame spray pyrolysis. Appl. Surf. Sci. 475, 191–203 (2019). doi:10.1016/j.apsusc.2018.12.274 [Google Scholar]
  23. B. Xiao, Q. Zhao, D. Wang, G. Ma, M. Zhang, Facile synthesis of nanoparticle packed In2O3 nanospheres for highly sensitive NO2 sensing. New J. Chem. 41, 8530–8535 (2017). doi:10.1039/C7NJ00647K [Google Scholar]
  24. Q. Yang, Y. Wang, J. Liu, Y. Gao, P. Sun, Z. Jie, T. Zhang, Y. Wang, G. Lu, Enhanced sensing response towards NO2 based on ordered mesoporous Zr-doped In2O3 with low operating temperature. Sensor. Actuat. B-Chem. 241, 806–813 (2017). doi:10.1016/j.snb.2016.09.145 [CrossRef] [Google Scholar]
  25. M. Ding, N. Xie, C. Wang, X. Kou, H. Zhang, L. Guo, Y. Sun, X. Chuai, Y. Gao, F. Liu, P. Sun, G. Lu, Enhanced NO2 gas sensing properties by Ag-dopedhollow urchin-like In2O3 hierarchical nanostructures. Sensor. Actuat. B-Chem. 252, 418–427 (2017). doi:10.1016/j.snb.2017.06.016 [CrossRef] [Google Scholar]
  26. Z. Yang, D. Zhang, H. Chen, MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. Sensor. Actuat. B-Chem. 300 (2019). doi:10.1016/j.snb.2019.127037 [CrossRef] [Google Scholar]
  27. C.Y. Wang, R.W. Becker, T. Passow, W. Pletschen, K. Köhler, V. Cimalla, O. Ambacher, Photon stimulated sensor based on indium oxide nanoparticles I: Wide-concentration-range ozone monitoring in air. Sensor. Actuat. B-Chem. 152, 235–240 (2011). doi:10.1016/j.snb.2010.12.014 [CrossRef] [Google Scholar]
  28. C.Y. Wang, S. Bagchi, M. Bitterling, R.W. Becker, K. Köhler, V. Cimalla, O. Ambacher, C. Chaumette, Photon stimulated ozone sensor based on indium oxide nanoparticles II: Ozone monitoring in humidity and water environments. Sensor. Actuat. B-Chem. 164, 37–42 (2012). doi:10.1016/j.snb.2012.01.058 [CrossRef] [Google Scholar]
  29. F. Rigoni, G. Drera, S. Pagliara, A. Goldoni, L. Sangaletti, High sensitivity, moisture selective, ammonia gas sensors based on single-walled carbon nanotubes functionalized with indium tin oxide nanoparticles. Carbon 80, 356–363 (2014). doi:10.1016/j.carbon.2014.08.074 [Google Scholar]
  30. R.R. MacLean, G.W. Valentine, P.I. Jatlow, M. Sofuoglu, Inhalation of alcohol vapor: measurement and implications. Alcohol. Clin. Exp. Res. 41, 238–250 (2017). doi:10.1111/acer.13291 [Google Scholar]
  31. K. Anand, J. Kaur, R.C. Singh, R. Thangaraj, Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor. Chem. Phys. Lett. 682, 140–146 (2017). doi:10.1016/j.cplett.2017.06.008 [Google Scholar]
  32. J. Wang, Z. Zheng, D. An, X. Tong, Q. Zhou, Highly selective n-butanol gas sensor based on porous In2O3 nanoparticles prepared by solvothermal treatment. Mat. Sci. Semicon. Proc. 83, 139–143 (2018). doi:10.1016/j.mssp.2018.04.014 [CrossRef] [Google Scholar]
  33. D. Zhang, M. Wang, Z. Yang, Facile fabrication of graphene oxide/Nafion/indium oxide for humidity sensing with highly sensitive capacitance response. Sensor. Actuat. B-Chem. 292, 187–195 (2019). doi:10.1016/j.snb.2019.04.133 [CrossRef] [Google Scholar]
  34. F. Liu, G. Huang, X. Wang, X. Xie, G. Xu, G. Lu, X. He, J. Tian, H. Cui, High response and selectivity of single crystalline ZnO nanorods modified by In2O3 nanoparticles for n-butanol gas sensing. Sensor. Actuat. B Chem. 277, 144–151 (2018). doi:10.1016/j.snb.2018.08.144 [CrossRef] [Google Scholar]
  35. J. Zhang, H. Wang, X. Yuan, G. Zeng, W. Tu, S. Wang, Tailored indium sulfide-based materials for solar-energy conversion and utilization. J. Photoch. Photobio. C 38, 1–26 (2019). doi:10.1016/j.jphotochemrev.2018.11.001 [CrossRef] [Google Scholar]
  36. A.N. Banerjee, S.W. Joo, B.K. Min, Photocatalytic degradation of organic dye by sol-gel-derived gallium-doped anatase titanium oxide nanoparticles for environmental remediation. J. Nanomater. (2012). doi:10.1155/2012/201492 [Google Scholar]
  37. B. Asgari, J. Bowen, Gallium (III)-Metalloporphyrin Grafted Magnetite Nanoparticles for Fluoride Removal from Aqueous Solutions. Nat. Prod. Chem. Res. 5, 282 (2017). doi:10.4172/2329-6836.1000282 [Google Scholar]
  38. W. Gao, W. Liu, Y. Leng, X. Wang, X. Wang, B. Hu, D. Yu, Y. Sang, H. Liu, In2S3 nanomaterial as a broadband spectrum photocatalyst to display significant activity. Appl. Catal. B Environ. 176–177, 83–90 (2015). doi:10.1016/j.apcatb.2015.03.048 [CrossRef] [Google Scholar]
  39. R. Wu, Y. Xu, R. Xu, Y. Huang, B. Zhang, Ultrathinnanosheet-based 3D hierarchical porous In2S3 microspheres: chemical transformation synthesis, characterization, and enhanced photocatalytic and photoelectrochemical property. J. Mater. Chem. A. 3, 1930–1934 (2015). doi:10.1039/C4TA05729E [CrossRef] [Google Scholar]
  40. Y. Li, S. Luo, Z. Wei, D. Meng, M. Ding, C. Liu, Electrodeposition technique-dependent photoelectrochemical and photocatalytic properties of an In2S3/TiO2 nanotube array. Phys. Chem. Chem. Phys. 16, 4361–4368 (2014). doi:10.1039/C3CP54675F [Google Scholar]
  41. Z. Zhang, Y. Tang, C. Liu, L. Wan, Fabrication of In2S3 nanoparticle decorated TiO2 nanotube arrays by successive ionic layer adsorption and reaction technique and their photocatalytic application. J. Nanosci. Nanotechnol. 14, 4170–4177 (2014). doi:10.1166/jnn.2014.8232 [CrossRef] [PubMed] [Google Scholar]
  42. T. Yan, T. Wu, Y. Zhang, M. Sun, X. Wang, Q. Wei, B. Du, Fabrication of In2S3/Zn2GeO4 composite photocatalyst for degradation of acetaminophen under visible light. J. Colloid. Interface. Sci. 506, 197–206 (2017). doi:10.1016/j.jcis.2017.06.079 [Google Scholar]
  43. Y. Chen, G. Tian, Q. Guo, R. Li, T. Han, H. Fu, Onestep synthesis of a hierarchical Bi2S3 nanoflower/In2S3 nanosheet composite with efficient visible-light photocatalytic activity. Cryst. Eng. Comm. 17, 8720–8727 (2015). doi:10.1039/C5CE01747E [CrossRef] [Google Scholar]
  44. H. Li, Z. Yuan, C. Bittencourt, W. Li, M. Chen, W. Li, R. Snyders, Anion exchange synthesis of hollow β-In2S3 nanoparticles: Adsorption and visible light photocatalytic performances. J. Environ. Chem. Eng. 7 (2019). doi:10.1016/j.jece.2019.102910 [PubMed] [Google Scholar]
  45. X. Wei, H. Feng, L. Li, J. Gong, K. Jiang, S. Xu, P.K. Chu, Synthesis of tetragonal prismatic γ-In2Se3 nanostructures with predominantly {110} facets and photocatalytic degradation of tetracycline. Appl. Catal. B Environ. 260 (2020). doi:10.1016/j.apcatb.2019.118218 [Google Scholar]
  46. P. Gao, A.R. Li, M.H. Tai, Z.Y. Liu, D.D. Sun, A hierarchical nanostructured carbon nanofiber-In2S3 photocatalyst with high photodegradation and disinfection abilities under visible light. Chem. Asian. J. 9, 1663–1670 (2014). doi:10.1002/asia.201400057 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.