Open Access
Issue
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 02008
Number of page(s) 10
Section Geotechnical and Geoenvironmental Engineering
DOI https://doi.org/10.1051/e3sconf/202016602008
Published online 22 April 2020
  1. A. Malka, Historical amber mine at the Amber Mount, in Conference: ProGEO WG3 meeting 2010. International Conference on Geodiversity, natural and cultural heritage of the Kaszuby Region (Eastern Pomerania – Poland). Guide-Book of the field excursion, 6 – 10 September 2010, Gdańsk, Poland [Google Scholar]
  2. M. Krinitskaya, V. Nesterovsky, Influence of the behavior of the pre-cenozoic surface of takarst processes on the formation of amber deposits in the Rivne Polesie. Collection of scientific papers of the Institute of geological Sciences of the national Academy of Sciences of Ukraine 3, 271–275 (2010) [Google Scholar]
  3. I.D. Van der Werf, D. Fico, G.E. De Benedetto, L. Sabbatini, The molecular composition of Sicilian amber. Microchemical Journal 125, 85–96 (2016). doi:10.1016/j.microc.2015.11.012 [CrossRef] [Google Scholar]
  4. V.I. Alekseev, The beetles (Insecta Coleoptera) of Baltic amber: the checklist of described species and preliminary analysis of biodiversity. Zoology and Ecology, 23(1), 5–12 (2013). doi;10.1080/21658005.2013.769717 [CrossRef] [Google Scholar]
  5. D. Antoljak, D. Kuhinek, T. Korman, T. Kujundzic, Dependency of specific energy of rock cutting on specific drilling energy. Rudarsko Geolosko Naftni Zbornik 33(3), 23–32 (2018). doi:10.17794/rgn.2018.3.3 [CrossRef] [Google Scholar]
  6. O. Belichenko, J. Ladzhun, Complex gemological research of new types of treated amber. Visnyk of Taras Shevchenko National University of Kyiv. Geology 4(75), 30–34 (2016). doi:10.17721/17282713.75.04 [CrossRef] [Google Scholar]
  7. A. Krek, M. Ulyanova, S. Koschavets, Influence of land-based Kaliningrad (Primorsky) amber mining on coastal zone. Marine Pollution Bulletin 131, 1–9 (2018). doi:10.1016/j.marpolbul.2018.03.042 [Google Scholar]
  8. J. Poulin, K. Helwig, The characterization of amber from deposit sites in western and northern Canada. Journal of Archaeological Science: Reports 7, 155–168 (2016). doi:10.1016/j.jasrep.2016.03.037 [CrossRef] [Google Scholar]
  9. Q.Y. Xing et al. Study on the Gemological Characteristics of Amber from Myanmar and Chinese Fushun, Key Engineering Materials, 544 (2013). doi:10.4028/www.scientific.net/KEM.544.172 [Google Scholar]
  10. Y. Malanchuk, V. Korniienko, V. Moshynskyi, V. Soroka, A. Khrystyuk, Z. Malanchuk, Regularities of hydromechanical amber extraction from sandy deposits. Mining of Mineral Deposits 13(1), 49–57 (2019). doi:10.33271/mining13.01.049 [CrossRef] [Google Scholar]
  11. V. Poturaev, A. Voloshin, V. Ponomarev, Onedimensional flow of a two-phase medium. Soviet Applied Mechanics 25(8), 843–850 (1989) [CrossRef] [Google Scholar]
  12. M. Krinitskaya, V. Nesterovsky, Paleocarst declines as promising traps of amber deposits within the North-Western slope of the mountain, in Abstracts of the Second International scientific and practical conference “Ukrainian amber world”, 2008, p. 31 [Google Scholar]
  13. A. Malka, R. Kramarska, The mining of Baltic amber deposits in Poland, in The intonational amber researcher symposium, Gdańsk, Poland, 2013 [Google Scholar]
  14. A. Kumar, Z. Wang, S. Ni, C. Li, Amber: a debuggable dataflow system based on the actor model. Proceedings of the VLDB Endowment 13(5), 740–753 (2020). doi:10.14778/3377369.3377381 [CrossRef] [Google Scholar]
  15. Z. Malanchuk, V. Moshynskyi, Y. Malanchuk, V. Korniienkо, Physico-Mechanical and Chemical Characteristics of Amber. Non-Traditional Technologies in the Mining Industry. Trans Tech Publications Inc. Solid State Phenomena, 277 (2018). doi:10.4028/www.scientific.net/SSP.277 [Google Scholar]
  16. A.M. Zakharenko, K.S. Golokhvast, Using Confocal Laser Scanning Microscopy to Study Fossil Inclusion in Baltic Amber, a New Approach. Key Engineering Materials 806 (2019). doi:10.4028/www.scientific.net/KEM.806.192 [Google Scholar]
  17. K. Karmanov, B. Burnashov, B. Chubarenko, Contemporary Dynamics of the Sea Shore of Kaliningrad Oblast. Archives of Hydro-Engineering and Environmental Mechanics 65(2), 143–159 (2018). doi:10.1515/heem-2018-0010 [CrossRef] [Google Scholar]
  18. D. Chen, Q. Zeng, Y. Yuan, W. Luo, Baltic amber or Burmese amber: FTIR studies on amber artifacts of Eastern Han Dynasty unearthed from Nanyang. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 222, 117270 (2019). doi:10.1016/j.saa.2019.117270 [CrossRef] [Google Scholar]
  19. S. Paynter, M.C. Jackson, Mellow yellow: An experiment in amber. Journal of Archaeological Science: Reports 22, 568–576 (2018). doi:10.1016/j.jasrep.2017.11.038 [CrossRef] [Google Scholar]
  20. B. Radwanek-Bąk, M. Nieć, Valorization of undeveloped industrial rock deposits in Poland. Resources Policy 45, 290–298 (2015). doi:10.1016/j.resourpol.2015.07.001 [CrossRef] [Google Scholar]
  21. L.J. Seyfullah, E.M. Sadowski, A.R. Schmidt, Species-level determination of closely related araucarian resins using FTIR spectroscopy and its implications for the provenance of New Zealand amber. PeerJ 3, e1067 (2015). doi:10.7717/peerj.1067 [CrossRef] [PubMed] [Google Scholar]
  22. A. Mitchell, Hukawng Basin, the Amber Mines, and the Orbitolina Limestone. Geological Belts, Plate Boundaries, and Mineral Deposits in Myanmar, 524 (2018). doi:10.1016/B978-0-12-803382-1.00013-4 [Google Scholar]
  23. Y. Wang, Y. Li, F. Liu, Q. Chen, Characteristics of Hydrothermally Treated Beeswax Amber. Gems and Gemology 55(3) (2019). doi:10.5741/GEMS.55.3.370 [CrossRef] [Google Scholar]
  24. Y. Malanchuk, V. Moshynskyi, V. Korniienko, Z. Malanchuk, Modeling the process of hydromechanical amber extraction. E3S Web Conf. 60 (2018). doi:10.1051/e3sconf/20186000005 [CrossRef] [EDP Sciences] [Google Scholar]
  25. R. Cruickshank, Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences 21(5), 441–455 (2003) [Google Scholar]
  26. M. Lustyuk, Physical and technical bases of hydraulic extraction of lumpy materials from placer deposits. Exactly: Europe 234 (2005) [Google Scholar]
  27. M. Lustyuk, Fundamentals of mechanical and hydraulic mining. Scientific Bulletin of NSU 3, 33–36 (2007) [Google Scholar]
  28. V.M. Matsui, U.Z. Naumenko, O.L. Aleksandrov, G.O. Kuzmanenko, Problems of the amber polesia of ukraine related to the development of ambersuccinite deposits. Visnyk Nacionalnoyi Akademiyi Nauk Ukrainy 11, 45–52 (2019). doi:10.15407/visn2019.11.045 [CrossRef] [Google Scholar]
  29. Z. Malanchuk, V. Korniienko, Y. Malanchuk, Results of research into amber mining by hydromechanical method. Mining of Mineral Deposits 11(1), 93–99 (2017). doi:10.15407/mining11.01.093 [CrossRef] [Google Scholar]
  30. I. Sadovenko, M. Lustyuk, Theoretical and applied bases of mechanical and hydraulic technology of testing, design and development of amber deposits in Ukraine (Publishing house of the European University, Kyiv, 2008) [Google Scholar]
  31. V.M. Masley, D.K. Mozgovoy, K.G. Bilousov, V.S. Horoshilov, O.S. Bushanska, N.G. Galich, Methods of the impact evaluation of amber mining by multispectral satellite images. Kosmicna Nauka i Tehnologia 22(6), 26–36 (2016). doi:10.15407/knit2016.06.026 [CrossRef] [Google Scholar]
  32. M. Lustyuk, Classification of systems for testing and development of amber deposits. Mining, construction, road and land reclamation machines 69, 34–41 (2007) [Google Scholar]
  33. X. Li, L. Huang, J. Zhou, G. Zhao, Review and prospect of mining technology in hard rock mines. Chinese Journal of Nonferrous Metals 29(9), 1–20 (2019). doi:10.19476/j.ysxb.1004.0609.2019.09.04 [CrossRef] [Google Scholar]
  34. J. Keenan, D. Kemp, J. Owen, Corporate responsibility and the social risk of new mining technologies. Corporate Social Responsibility and Environmental Management 26(2) (2019). doi:10.1002/csr.1717 [Google Scholar]
  35. K. Szamalek, Amber as a strategic raw material. Biuletyn Panstwowego Instytutu Geologicznego 466 (2016). doi:10.5604/01.3001.0009.4326 [Google Scholar]
  36. A.O. Kyselov, Combating illegal amber mining: Peculiarities of conflict resolution. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2, 146–152 (2019). doi:10.29202/nvngu/20192/19 [CrossRef] [Google Scholar]
  37. M. Lustyuk, Description of the technological scheme for the development of amber deposits. Vestnik NUVGP 2 (34), 214–220 (2006) [Google Scholar]
  38. V. Arens, Fundamentals of the methodology of mining science (2001) [Google Scholar]
  39. S. Gumenik, A. Sokil, E. Semenenko, V. Shurygin, Problems of development of placer deposits. Sich 224 (2001) [Google Scholar]
  40. N. Shvaher, T. Komisarenko, S. Chukharev, S. Panova, Annual production enhancement at deep mining. E3S Web of Conferences 123, 01043 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  41. A. Abramov, Processing, enrichment and complex use of solid minerals (Moscow state mining University Press, Moscow, 2001) [Google Scholar]
  42. O. Romanovsky, V. Kirikovich, Research of flotation properties of amber. Vestnik UDUWGP 2(26), 323–328 (2004) [Google Scholar]
  43. Yu. Baranov, B. Bluess, E. Semenenko, V. Shurygin, Justification of parameters and modes of operation of hydrotransport systems of mining enterprises (National Academy of Sciences of Ukraine, Institute of geotechnical mechanics, Kyiv, 2006) [Google Scholar]
  44. V. Poturaev, A. Bulat, A. Voloshin, S. Ponomarenko. Mechanics of vibration-pneumatic ejector type machines (National Academy of Sciences of Ukraine, Institute of geotechnical mechanics, Kyiv, 2001) [Google Scholar]
  45. A. Bulat, A. Sokil, Non-stationary movement of a hydraulic mixture during condensation in technological equipment. Geotechnical mechanics 22, 3–7 (2000) [Google Scholar]
  46. A. Shevchenko, N. Kolesnik, Crane vibration technologies in construction and safety. Lifting structures 14–15 (2003) [Google Scholar]
  47. V. Poturaev, V. Franchuk, V. Naduty, Vibration technology and technologies in energy-intensive industries (NGA, 2002) [Google Scholar]
  48. V. Naduty, E. Lapshin, L. Prokopishin, Experimental studies of the influence of vibration exciter parameters on the segregation process. Geotechnical mechanics 42, 136–142 (2003) [Google Scholar]
  49. V. Naduty, E. Lapshin, Probabilistic processes of vibrational classification of mineral raw materials. Scientific thought 179 (2005) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.