Open Access
Issue
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 03004
Number of page(s) 6
Section Sustainable Mining
DOI https://doi.org/10.1051/e3sconf/202016603004
Published online 22 April 2020
  1. M. E. Jarvie-Eggart, Responsible mining: case studies in managing social and environmental risks in the developed world (Englewood, Colorado, 2015) [Google Scholar]
  2. A. Jordens, Y.P. Cheng, K.E. Waters, A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 41, 97–114 (2013). doi:10.1016/j.mineng.2012.10.017 [CrossRef] [Google Scholar]
  3. H. Wang, Y. He, C. Duan, Y. Zhao, Y. Tao, C. Ye, Development of mineral processing engineering education in China University of Mining and Technology. Advances in Comp. Sci. and Eng. 141, 77–83 (2012). doi:10.1007/978-3-642-27948-5_11 [CrossRef] [Google Scholar]
  4. M.B. Fedko, V.A. Kolosov, S.V. Pismennyi, Ye.V. Kalinichenko, Economic aspects of change-over to TNT-free explosives for the purposes of ore underground mining in Kryvyi Rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4, 79–84 (2014). doi:10.31721/2306-5451-2018-1-4681-85 [Google Scholar]
  5. M.I. Stupnik, V.O. Kalinichenko, S.V. Pysmennyi, O.V. Kalinichenko, Determining the qualitative composition of the equivalent material for simulation of Kryvyi Rih iron ore basin rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4, 21–27. (2018). doi:10.29202/nvngu/2018-4/4 [CrossRef] [Google Scholar]
  6. V. Golik, V. Komashchenko, V. Morkun, Geomechanical terms of use of the mill tailings for preparation. Metallurg. and Mining Ind. 7(4), 321–324 (2015) [Google Scholar]
  7. V. Golik, V. Komashchenko, V. Morkun, O. Burdzieva, Metal deposits combined development experience. Metallurg. and Mining Ind. 7(6), 591–594 (2015) [Google Scholar]
  8. V. Morkun, N. Morkun, V. Tron, S. Hryshchenko, O. Serdiuk, I. Dotsenko, Basic regularities of assessing ore pulp parameters in gravity settling of solid phase particles based on ultrasonic measurements. Arch. of Acoust. 44(1), 161–167 (2019). doi:10.24425/aoa.2019.126362 [Google Scholar]
  9. S. Pysmennyi, D. Brovko, N. Shwager, I. Kasatkina, D. Paraniuk, O. Serdiuk, Development of complexstructure ore deposits by means of chamber systems under conditions of the Kryvyi Rih iron ore field. East.-European J. of Enterprise Tech. 5, 1(95), 33–45 (2018). doi:10.15587/1729-4061.2018.142483 [CrossRef] [Google Scholar]
  10. V. Kalinichenko S. Pysmennyi, N. Shvaher, O. Kalinichenko, Selective underground mining of complex structured ore bodies of Kryvyi Rih Iron Ore Basin. E3S Web of Conf. 60, 00041 (2018). doi:10.1051/e3sconf/20186000041 [CrossRef] [EDP Sciences] [Google Scholar]
  11. G.I. Gazaleyeva, S.B. Mamonov, Ye.V. Bratygin, A.M. Klyushnikov, Problems and innovative solutions in technogenic materials concentration. GIAB 1, 257–272 (2017) [Google Scholar]
  12. V.I. Komashenko, I.V. Erohin, Concept of reducing hazardous contamination of the mining regions of KMA. Mining inform. and analisys bull. 2, 10–16 (2014) [Google Scholar]
  13. J.M. Harris, B. Roach, M. E. Sharpe, Environmental and natural resource economics. A contemporary approach (Armonk, New York, 2013) [Google Scholar]
  14. A. Kupin, D. Kuznetsov, I. Muzyka, D. Paraniuk, O. Serdiuk, O. Suvorov, V. Dvornikov, The concept of a modular cyberphysical system for the early diagnosis of energy equipment. East.-European J. of Enterprise Technol. 4 (2–94), 71–79 (2018). doi:10.15587/1729-4061.2018.139644 [CrossRef] [Google Scholar]
  15. S. Tishchenko, G. Eremenko, O. Kukharenko, A. Pikilnyak, I. Gaponenko, Definition of the destruction zone boundaries and particle size distribution of blasted rock mass in the explosion of a single explosive charge in an inorganic medium. Metallurg. and Mining Ind. 7(8), 564–567 (2015) [Google Scholar]
  16. A. Bublikov, V. Tkachov, Automation of the control process of the mining machines based on fuzzy logic. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 3, 112-118 (2019). doi:10.29202/nvngu/2019-3/19 [Google Scholar]
  17. I. Kotov, O. Suvorov, O. Serdiuk, Development of methods for structural and logical model unification of metaknowledge for ontologies evolution managing of intelligent systems. East.-European J. of Enterprise Technol. 2(4–98), 38–47 (2019). doi:10.15587/17294061.2019.155410 [CrossRef] [Google Scholar]
  18. V.I. Lyashenko, V.P. Franchuk, B.P. Kislyi, Modernization of the technical and technological complex of uranium mining. Mining J. 1, 26–32 (2015) [Google Scholar]
  19. V.I. Komashchenko, P.V. Vasilyev, S.A. Maslennikov, Reliable raw material base of underground mining of KMA deposits. Izvestiya TulGU. Earth Sciences 2, 95–101 (2016) [Google Scholar]
  20. J. Liu, Y. Han, Y. Li, S. Zhang, Study on mechanism and technology of deep reduction for iron ore leaching, in The 26th International Mineral Processing Congress, IMPC 2012: Innovative Processing for Sustainable Growth, New Delhi, 24-28 September 2012 [Google Scholar]
  21. A.G. Sekisov, Yu.S. Shevchenko, A.Yu. Lavrov, Prospects of mine leaching in mining gold ore deposits. FTPRRMPI 1, 110–116 (2016) [Google Scholar]
  22. M. Minagawa, S. Hisatomi, T. Kato, G. Granata, C. Tokoro, Enhancement of copper dissolution by mechanochemical activation of copper ores: Correlation between leaching experiments and DEM simulations. Adv. Powder Technol. 29(3), 471–478 (2018). doi:10.1016/j.apt.2017.11.031 [Google Scholar]
  23. D. Zhang, H. Ling, T. Yang, W. Liu, L. Chen, Selective leaching of zinc from electric arc furnace dust by a hydrothermal reduction method in a sodium hydroxide system. J. of Cleaner Prod. 224, 536–544 (2019). doi:10.1016/j.jclepro.2019.03.149 [CrossRef] [Google Scholar]
  24. H. Xie, L. Zhang, H. Li, S. Koppala, S. Yin, S. Li, K. Yang, F. Zhu, Efficient recycling of Pb from zinc leaching residues by using the hydrometallurgical method. Mater. Res. Express. 6(7) (2019). doi:10.1088/2053-1591/ab11b9 [Google Scholar]
  25. Y. Khint, Uda-technology. Special designtechnological bureau Disintegrator (Valgus, Tallinn, 1981) [Google Scholar]
  26. Y. Yang, X. Zheng, H. Cao, C. Zhao, X. Lin, P. Ning, Y. Zhang, W. Jin, Z. Sun, A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation. ACS Sustain. Chem. & Eng. 5(11), 9972-9980 (2017). doi:10.1021/acssuschemeng.7b01914. [CrossRef] [Google Scholar]
  27. S. Cetintas, U. Yildiz, D. Bingol, A novel reagentassisted mechanochemical method for nickel recovery from lateritic ore. J. of Cleaner Prod. 199, 616–632 (2018). doi: 10.1016/j.jclepro.2018.07.212. [CrossRef] [Google Scholar]
  28. E. Fan, L. Li, X. Zhang, Y. Bian, Q. Xue, J. Wu, F. Wu, R. Chen, Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach. ACS Sustain. Chem. & Eng., 6(8), 11029–110315 (2018). doi:10.1021/acssuschemeng.8b02503 [CrossRef] [Google Scholar]
  29. M. Wang, Q. Tan, J. Li, Unveiling the role and mechanism of mechanochemical activation on lithium cobalt oxide powders from spent lithium-ion batteries. Environ. Sci. & Technol., 52(22), 13136–13143 (2018). doi: 10.1021/acs.est.8b03469. [CrossRef] [Google Scholar]
  30. Y. Ghorbani, J.-P. Franzidis, J. Petersen, Heap leaching technology – current State, innovations, and future directions: a review. Miner. Proc. and Extract. Metall. Rev. 37(2), 73–119 (2016). doi:10.1080/08827508.2015.1115990 [Google Scholar]
  31. G. Granata, K. Takahashi, T. Kato, C. Tokoro, Mechanochemical activation of chalcopyrite: Relationship between activation mechanism and leaching enhancement. Miner. Eng. 131, 280–285 (2018). doi:10.1016/j.mineng.2018.11.027. [CrossRef] [Google Scholar]
  32. L. Sinclair, J. Thompson, In situ leaching of copper: Challenges and future prospects. Hydrometallurgy, 157, 306–324 (2015). doi:10.1016/j.hydromet.2015.08.022 [CrossRef] [Google Scholar]
  33. D.M. De Oliveira, L.G.S. Sobral, G.J. Olson, S.B. Olson, Acid leaching of a copper ore by sulphuroxidizing microorganisms. Hydrometallurgy 147–148, 223–227 (2014). doi:10.1016/j.hydromet.2014.05.019 [CrossRef] [Google Scholar]
  34. A.A. Morozov, M.V. Yakovlev, Processing of offbalance uranium ores formed in mining Streltsovo ore deposit. GIAB 12, 174–181 (2016) [Google Scholar]
  35. A.M. Freeman, J.A. Herriges, C.L. Kling, The measurement of environmental and resource values. Theory and methods (RFF Press, New York, 2014) [CrossRef] [Google Scholar]
  36. V.I. Lyashenko, Environment-saving technologies for mining complex deposits. Mine-Surv. J., 1, 10–15 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.