Open Access
Issue
E3S Web Conf.
Volume 167, 2020
2020 11th International Conference on Environmental Science and Development (ICESD 2020)
Article Number 04003
Number of page(s) 6
Section Atmospheric Environment
DOI https://doi.org/10.1051/e3sconf/202016704003
Published online 24 April 2020
  1. E. Gadena, X. Guardino, M. Rosell, and J. Silva, “ NTP 550: Prevención de riesgos en el laboratorio: ubicación y distribución”, ed, 1994, p. 5. [Google Scholar]
  2. T. Schulze, D. Gürlich, and U. Eicker, “Performance assessment of controlled natural ventilation for air quality control and passive cooling in existing and new office type buildings, ” Energy and Buildings, vol. 172, pp. 265-278, 2018. [Google Scholar]
  3. P. Karava, T. Stathopoulos, and A. K. Athienitis, “Windinduced natural ventilation analysis”, Solar Energy, vol. 81, pp. 20-30, 2007. [CrossRef] [Google Scholar]
  4. V. Mujica and C. Pérez, “Evaluación de impactos ambientales en el Laboratorio de Ingeniería Química de la Universidad de Carabobo, ” INGENIERÍA UC, vol. 12, p. 10, 2005. [Google Scholar]
  5. A. P. Borja Suárez, “Estudio de instalaciones de sistemas de computación y diseño de un laboratorio prototipo para un centro de educación”, QUITO: EPN, 1990, 1990. [Google Scholar]
  6. A. Limane, H. Fellouah, and N. Galanis, “Threedimensional OpenFOAM simulation to evaluate the thermal comfort of occupants, indoor air quality and heat losses inside an indoor swimming pool”, Energy and Buildings, vol. 167, pp. 49-68, 2018. [Google Scholar]
  7. M. S. M. Ali, L. L. Leong, M. N. Ramly, S. A. Z. Shaikh, and S. Muhammad, “Utilizing open source software running in inexpensive high performance computing system for cfd applications”, ARPN vol. 12, pp. 3061-3067, 2017. [Google Scholar]
  8. M. Balogh, A. Parente, and C. Benocci, “RANS simulation of ABL flow over complex terrains applying an Enhanced k ε model and wall function formulation: Implementation and comparison for fluent and OpenFOAM”, J. W. E. and Indus. Aerodyna., vol. 104-106, pp. 360-368, 2012. [CrossRef] [Google Scholar]
  9. N. F. M. Kasim, S. A. Zaki, M. S. Mat Ali, A. F. Mohammad, and A. Abd Razak, “A verification and validation study of CFD simulation of wind-induced ventilation on building with single-sided opening”, in Applied Mechanics and Materials vol. 554, ed, 2014, pp. 696-700. [CrossRef] [Google Scholar]
  10. M. Córdova, P. Martínez, and T. Saltos, “Evaluación de la Calidad de Aire en los Laboratorios de la Universidad Técnica de Ambato”, U.T.A. 2016. [Google Scholar]
  11. O. OpenCFD, “The open source CFD toolbox”, User Guide, OpenCFD Ltd, vol. 770, (2009). [Google Scholar]
  12. B. Correa, R. David, and J. P. Kastillo Estévez, “Optimización energética para el aprovechamiento de ventilación natural en edificaciones en climas cálidos de Ecuador, ” Quito, 2015., ( 2015). [Google Scholar]
  13. T. Kleiven, Natural ventilation in buildings: architectural concepts, consequences and possibilities: Institutt for byggekunst, historie og teknologi, (2003). [Google Scholar]
  14. M. Santamouris and P. Wouters, Building Ventilation: The state of the art: Routledge, 2006. [CrossRef] [Google Scholar]
  15. B. R. Hughes, J. K. Calautit, and S. A. Ghani, “The development of commercial wind towers for natural ventilation: A review”, Applied Energy, vol. 92, pp. 606-627, (2012). [Google Scholar]
  16. N. Mingotti, T. Chenvidyakarn, and A. W. Woods, “The fluid mechanics of the natural ventilation of a narrowcavity double-skin facade”, Building and environment, vol. 46, pp. 807-823, 2011. [Google Scholar]
  17. W. H. Organization, “Manual de bioseguridad en el laboratorio”, 2005. [Google Scholar]
  18. I. E. d. N. (INEN), “NTE INEN 1126: Ventilación natural de edificios., ” in Requisitos, ed, (1984). [Google Scholar]
  19. H. Lee and A. Ozaki, “Sensitivity analysis for optimization of renewable-energy-based aircirculation-type temperature-control system”, Applied Energy, vol. 230, pp. 317-329, 2018. [Google Scholar]
  20. R. Bruno, N. Arcuri, and G. Cuconati, “A smart airconditioning plant for efficient energy buildings”, in Internet of Things vol. Part F2, ed, 2019, pp. 251-274. [CrossRef] [Google Scholar]
  21. M. Palme, A. Lobato, A. Gallardo, R. Beltrán, J. Kstillo, G. Villacreses, et al., “Estrategias para mejorar las condiciones de habitabilidad y el consumo de energía en viviendas, ” ed, 2015, p. 64. [Google Scholar]
  22. I. E. d. N. (INEN), “NTE INEN 15927-1. COMPORTAMIENTO HIGROTÉRMICO DE EDIFICIOS. CÁLCULO Y PRESENTACIÓN DE DATOS CLIMÁTICOS. PARTE 1, ” in MEDIAS MENSUALES DE ELEMENTOS METEREOLÓGICOS SIMPLES, ed, 2013, p. 29. [Google Scholar]
  23. E. Gadena, X. Guardino, M. Rosell, and J. Silva, “NTP 551: Prevención de riesgos en el laboratorio: la importancia del diseño, ” ed, 2000, p. 6. [Google Scholar]
  24. A. Morejón and M. Córdova, “Condiciones de iluminación que inciden en el confort visual de los ocupantes de laboratorios de la Universidad Técnica de Ambato Campus Huachi, ” Master, Universidad Técnica de Ambato, 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.