Open Access
Issue
E3S Web Conf.
Volume 168, 2020
II International Conference Essays of Mining Science and Practice
Article Number 00041
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202016800041
Published online 06 May 2020
  1. Van Krevelen, D.W. (1993). Coal: Typology-Physics-Chemistry-Constitution. Amsterdam: Elsevier Science [Google Scholar]
  2. Mathews, J.P., Chaffee, A.L. (2012). The molecular representations of coal A review. Fuel, 96 (1), 1-14 [CrossRef] [Google Scholar]
  3. Ke-Chang, Xie. (2015). Structure and reactivity of coal: A survey of selected Chinese coals. Springer-Verlag. Berlin, Heidelberg [Google Scholar]
  4. Sharma, A., Kyotani, T., Tomita, A. (1999). A new quantitative approach for microstructural analysis of coal char using HRTEM images. Fuel, 78 (10), 1203-1212 [CrossRef] [Google Scholar]
  5. Suping, Yao, Kun, Jiao, Ke, Zhang, WenXuan, Hu, Hai, Ding, MiaoChun, Li, WenMing, Pei. (2011). An atomic force microscopy study of coal nanopore structure. Chinese Science Bulletin, 56 (25), 2706-2712 [CrossRef] [Google Scholar]
  6. Sukachev, V.N., Lavrenko, Y.M. (1972). Izbrannye trudy v trekh tomakh. Tom 1: Osnovy lesnoy tipologii i biogeotsenologii. Leningrad: Nauka [Google Scholar]
  7. Scott, A.C., Glasspool, I.J. (2006). The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences of the United States of America, 103 (29), 10861-10865 [CrossRef] [PubMed] [Google Scholar]
  8. Grossart, H.-P., Keilor, R.J. (2016). Aquatic fungi: Targeting the forgotten in microbial ecology. Current Opinion in Microbiology, 31, 140-145 [CrossRef] [PubMed] [Google Scholar]
  9. Zavarzin, G.A., Kolotilova, N.N. (2003). Lektsii po prirodovedcheskoy mikrobiologii. Moscow: Nauka [Google Scholar]
  10. Gromov, B.V., Pavlenko, G. V. (1989). Ekologiya bakterii. Leningrad: Izdatelsvo LGU [Google Scholar]
  11. Barton, L.L., Fauque, G.D. (2009). Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Advances in Applied Microbiology, 68, 41–98 [CrossRef] [PubMed] [Google Scholar]
  12. Schobben, M., Stebbins, A., Ghaderi, A., Strauss, H., Korn, D., Korte, C. (2015). Eutrophication, microbial-sulfate reduction and mass extinctions. Commun Integr Biol., 9 (1): e1115162 [PubMed] [Google Scholar]
  13. Popa, R., Kinkle, B.K., Badescu, A. (2004). Pyrite Framboids as Biomarkers for IronSulfur Systems. Geomicrobiology, 21 (3), 193-206 [CrossRef] [Google Scholar]
  14. Hay, M.B., Myneni, S.C.B. (2007). Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochimica et Cosmochimica Acta, 71 (14), 3518-3532 [Google Scholar]
  15. Thornton, D.C.O. (2014). Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. European Journal of Phycology, 49 (1), 20-46 [Google Scholar]
  16. Dobrovolskaya, T.G. (2002). Struktura bakterialnykh soobshchestv pochv. Moscow: IKTs Akademkniga [Google Scholar]
  17. Meslé, M.; Dromart, G.; Oger, P. (2013) Microbial methanogenesis in subsurface oil and coal. Res. Microbiol., 164, 959–972 [CrossRef] [PubMed] [Google Scholar]
  18. Strapoc, D., Mastalerz, M., Dawson, K., Macalady, J., Callaghan, A.V., Wawrik, B., Turich, C., Ashby, M. (2011). Biogeochemistry of microbial coal-bed methane. Annual Review of Earth and Planetary Sciences, 39, 617–656 [Google Scholar]
  19. Beckmann, S., Luk, A.W.S., Gutierrez-Zamora, M.-L., Chong, N.H.H., Thomas, T., Lee, M., Manefield, M. (2019). Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation. The ISME Journal, 13, 632–650 [CrossRef] [PubMed] [Google Scholar]
  20. L. Pymonenko, O. Burchak, O. Balalaiev, V. Slobodiannykova, Yu. Sierikov. Change of parameters in molecular structure of Donbas coals under the influence of external factors. E3S Web of Conferences, International Conference Essays of Mining Science and Practice, 109 (2019). https://doi.org/10.1051/e3sconf/201910900077 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.