Open Access
Issue
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
Article Number 01002
Number of page(s) 8
Section Interior insulation
DOI https://doi.org/10.1051/e3sconf/202017201002
Published online 30 June 2020
  1. European Comission, Building and renovating. The European Green Deal (2019) [Google Scholar]
  2. P. Johansson, S. Geving, C.-E. Hagentoft, B.P. Jelle, E. Rognvik, A.S. Kalagasidis, B. Time, Interior insulation retrofit of a historical brick wall using vacuum insulation panels: Hygrothermal numerical simulations and laboratory investigations, Building and Environment, 79, 31-45 (2014) [Google Scholar]
  3. T. De Mets, A. Tilmans, X. Loncour, Hygrothermal assessment of internal insulation systems of brick walls through numerical simulation and full-scale laboratory testing, Energy Procedia, 132, 753-758 (2017) [Google Scholar]
  4. E. Vereecken, L. Van Gelder, H. Janssen, S. Roels, Interior insulation for wall retrofitting – A probabilistic analysis of energy savings and hygrothermal risks, Energy and Buildings, 89, 231-244 (2015) [Google Scholar]
  5. T. De Mets, A. Tilmans, E. Vereecken, S. Roels, Capillair actieve isolatiesystemen: een innovatieve oplossing voor binnenisolatie?, WTCB-Contact, 2019/5, 10-13 (2019) [Google Scholar]
  6. E. Vereecken, S. Roels, Capillary active interior insulation: do the advantages really offset potential disadvantages?, Materials and Structures, 48, 3009– 3021 (2015) [Google Scholar]
  7. J. Grunewald, U. Ruisinger, P. Haupl, The Rijksmuseum Amsterdam - hygrothermal analysis and dimensioning of thermal insulation, 3rd International Building Physics, Canada, 345-352 (2006) [Google Scholar]
  8. J. Zhao, J. Grunewald, U. Ruisinger, S. Feng, Evaluation of capillary-active mineral insulation systems for interior retrofit solution, Building and Environment, 115, 215-227 (2017) [Google Scholar]
  9. P. Kopecký, K. Staněk, M. Bureš, J. Richter, J. Tywoniak, Experimental investigations of wooden beam ends in masonry with internal insulation, Energy Procedia, 132, 682-687 (2017) [Google Scholar]
  10. E. Vereecken, S. Roels, Wooden beam ends in combination with interior insulation: An experimental study on the impact of convective moisture transport, Building and Environment, 148, 524-534 (2019) [Google Scholar]
  11. U. Ruisinger, Long-term measurements and simulations of five internal insulation systems and their impact on wooden beam heads, 2nd Central European symposium on building physics, Vienna, 313-319 (2013) [Google Scholar]
  12. T.K. Hansen, S.P. Bjarløv, R.H. Peuhkuri, M. Harrestrup, Long term in situ measurements of hygrothermal conditions at critical points in four cases of internally insulated historic solid masonry walls, Energy and Buildings, 172, 235-248 (2018) [Google Scholar]
  13. M. Harrestrup, S. Svendsen, Full-scale test of an old heritage multi-storey building undergoing energy retrofitting with focus on internal insulation and moisture, Building and Environment, 85, 123-133 (2015) [Google Scholar]
  14. M. Morelli, L. Rønby, S.E. Mikkelsen, M.G. Minzari, T. Kildemoes, H.M. Tommerup, Energy retrofitting of a typical old Danish multi-family building to a “nearly-zero” energy building based on experiences from a test apartment, Energy and Buildings, 54, 395-406 (2012) [Google Scholar]
  15. T. Loga, Erfahrungen mit der energetischen Modernisierung eines Gründerzeitgebäudes, Beitrag zur Baufachtagung (2004) [Google Scholar]
  16. H. Stopp, P. Strangfeld, T. Toepel, E. Anlauft, Messergebnisse und bauphysikalische Lösungsansätze zur Problematik der Holzbalkenköpfe in Außenwänden mit Innendämmung, Bauphysik, 32, 61-72, (2010) [CrossRef] [Google Scholar]
  17. M. Guizzardi, J. Carmeliet, D. Derome, Risk analysis of biodeterioration of wooden beams embedded in internally insulated masonry walls, Construction and Building Materials, 99, 159-168 (2015) [Google Scholar]
  18. M. Morelli, T.R. Nielsen, G.A. Scheffler, S. Svendsen, Internal Insulation of Masonry Walls with Wooden Floor Beams in Northern Humid Climate, Thermal Performance of the Exterior Envelopes of Whole Buildings XI, US (2010) [Google Scholar]
  19. M. Morelli, S. Svendsen, Investigation of interior post-insulated masonry walls with wooden beam ends, Journal of Building Physics, 36, 265-293 (2013) [Google Scholar]
  20. M. Harrestrup, S. Svendsen, Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick façades, Building and Environment, 99, 59-72 (2016) [Google Scholar]
  21. H.J.P. Brocken, O.C.G. Adan, L. Pel, Moisture transport properties of mortar and mortar joint: a NMR study, Heron, 42, 55-69 (1997) [Google Scholar]
  22. H. Derluyn, H. Janssen, P. Moonen, J. Carmeliet, Moisture transfer across the interface between brick and mortar joint, 8th Symposium on Building Physics in Nordic Countries, Denmark (2008) [Google Scholar]
  23. H. Derluyn, H. Janssen, J. Carmeliet, Influence of the nature of interfaces on the capillary transport in layered materials, Construction and Building Materials, 25, 3685-3693 (2011) [Google Scholar]
  24. M. Guizzardi, D. Derome, R. Vonbank, J. Carmeliet, Hygrothermal behavior of a massive wall with interior insulation during wetting, Building and Environment, 89, 59-71 (2015) [Google Scholar]
  25. K. Calle, N. Van Den Bossche, Towards understanding rain infiltration in historic brickwork, Energy Procedia, 132, 676-681 (2017) [Google Scholar]
  26. T. Odgaard, S.P. Bjarløv, C. Rode, Influence of hydrophobation and deliberate thermal bridge on hygrothermal conditions of internally insulated historic solid masonry walls with built-in wood, Energy and Buildings, 173, 530-546 (2018) [Google Scholar]
  27. T.K. Hansen, S.P. Bjarløv, R. Peuhkuri, The effects of wind-driven rain on the hygrothermal conditions behind wooden beam ends and at the interfaces between internal insulation and existing solid masonry, Energy and Buildings, 196, 255-268 (2019) [Google Scholar]
  28. K. Ueno, J.W. Lstiburek, Field Monitoring of Embedded Wood Members in Insulated Masonry Walls in a Cold Climate, BEST4 Conference (2015) [Google Scholar]
  29. C. B. Cestari, A. Lucchio, Interventions on historical building timber floors: Retractable - visible? invasive - not visible? A case study, Historical Constructions, 837-846 (2001) [Google Scholar]
  30. S. Couto, T.D. Gonçalves, J.M.G. Lopes, Drying of Red Ceramic Brick. Effect of five Siliconebased Water-Repellent Treatments, Hydrophobe VI, 81-92 (2011) [Google Scholar]
  31. Belgian Building Research Institute (BBRI), Waterwerende oppervlaktebehandeling, Technische Voorlichting, 224 (2002) [Google Scholar]
  32. Koninklijk Meteorologisch Instituut, Klimatologisch jaaroverzicht 2017 (2018). [Google Scholar]
  33. Koninklijk Meteorologisch Instituut, Klimatologisch jaaroverzicht 2018 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.