Open Access
Issue
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
Article Number 08004
Number of page(s) 7
Section Multidimensional modelling and thermal bridges
DOI https://doi.org/10.1051/e3sconf/202017208004
Published online 30 June 2020
  1. T. Blomberg, Heat conduction in two and three dimensions - Computer Modelling of Building Physics Applications, Dissertation Report TVBH-1008, Department of Building Physics, Lund University (1996) [Google Scholar]
  2. Information about software VOLTRA on www.physibel.be/en/products/voltra [Google Scholar]
  3. Information about software PSI-Therm 3D on www.psitherm.uk [Google Scholar]
  4. Information about software ANTHERM on www.antherm.at [Google Scholar]
  5. M. Janetti, F. Ochs, W. Feist, 3D Simulation of Heat and Moisture Diffusion in Constructions https://www.comsol.com/paper/download/83717/jan etti_paper.pdf requested on 25.2.2020(2012) [Google Scholar]
  6. P. Wegerer, T. Bednar, Hygrothermal performance of wooden beam heads in inside insulated walls considering air flows, EnergyProc. 132 (2017) [Google Scholar]
  7. Information about software Comsol Multiphysics on https://www.comsol.de [Google Scholar]
  8. Research report on https://projektinfos.energiewende bauen.de/projekt/software-zur-hygrothermischenplanung-von-baukonstruktionen/requested on 25.2.2020(2016) [Google Scholar]
  9. Information about software DELPHIN 6 on www.bauklimatik-dresden.de [Google Scholar]
  10. P. Kautsch, U. Ruisinger, H. Hengsberger, H. Steinwender, G. Dorr, K. Kukowetz, J. Ettenauer, K. Sterflinger, OEKO-ID - Innendammungen zur thermischen Gebaudeertuchtigung Untersuchung der Moglichkeiten und Grenzen okologischer, diffusionsoffener Dammsysteme, Programm-linie Neue Energien 2020, Research report on https://www.energieforschung.at/assets/project/final-report/OEKO-ID-Endbericht-web.pdf requested on 25.2.2020(2013) [Google Scholar]
  11. U. Ruisinger, Das hygrothermische Verhalten von Balkenkopfen bei innen gedammten Gebauden, Dissertation, TU Graz (2019) [Google Scholar]
  12. S. Roels, J. Carmeliet, H. Hens, H. Brocken, C. Hall, R. Plagge, R. Cerny, Z. Pavlik, K. Kumaran, A comparison of different techniques to quantify moisture content profiles in porous building materials Therm. Env. & Build. Sc. 27, 4 (2004) [Google Scholar]
  13. L. Sontag, A. Nicolai, S. Vogelsang, Validierung der Solverimplementierung des hygrothermischen Simulationsprogramms DELPHIN, https://nbnresolving. org/urn:nbn:de:bsz:14-qucosa-128968requested on 25.2.2020 (2013) [Google Scholar]
  14. DIN EN 15026 (2007) [Google Scholar]
  15. DIN EN ISO 10211 (2018) [Google Scholar]
  16. U. Ruisinger, P. Kautsch, Uber die Notwendigkeit dreidimensionaler, hygrothermischer Simulationen, Bauphysik 41, 295-301, 6 (2019) [CrossRef] [Google Scholar]
  17. E. Vereecken, S. Roels, Wooden beam ends in combination with interior insulation: The importance of an airtight sealing, EnergyProc. 132 (2017) [Google Scholar]
  18. S. Peper, B. Zeno, A. Bangert, S. Rupps, Den Luftstrom unterbinden, B + B Bauen im Bestand 6 (2013) [Google Scholar]
  19. P. Kopecky, K. Stanek, M. Bures, J. Richter, J. Tywoniak, Experimental investigations of wooden beam ends in masonry with internal insulation, Energy Proc. 132 (2017) [Google Scholar]
  20. P. Freudenberg, U. Ruisinger, E. Stocker, Calibration of Hygrothermal Simulations by the Help of a Generic Optimization Tool, EnergyProc. 132 (2017) [Google Scholar]
  21. WTA-Merkblatt 6-2, Simulation of heat and moisture transfer (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.