Open Access
Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 15001 | |
Number of page(s) | 8 | |
Section | Historical buildings | |
DOI | https://doi.org/10.1051/e3sconf/202017215001 | |
Published online | 30 June 2020 |
- EN ISO 10211:2017 Thermal bridges in building construction - Heat flows and surface temperatures - Detailed calculations. 2017, p. 76. [Google Scholar]
- E. Kossecka and J. Kosny, “Equivalent Wall as a Dynamic Model of a Complex Thermal Structure,” J. Build. Phys., vol. 20, no. 3, pp. 249–268, Jan. 1997, doi: 10.1177/109719639702000306. [Google Scholar]
- K. Martin, C. Escudero, A. Erkoreka, I. Flores, and J. M. Sala, “Equivalent wall method for dynamic characterisation of thermal bridges,” Energy Build., vol. 55, pp. 704–714, Dec. 2012, doi: 10.1016/j.enbuild.2012.08.024. [Google Scholar]
- Mao, Guofeng, “Thermal bridges,” Doctoral thesis, KTH, Stockholm, 1997. [Google Scholar]
- J. Akander, “The ORC Method – Effective Modelling of Thermal Performance of Multilayer Building Components,” Doctoral thesis, KTH, Stockholm, 2000. [Google Scholar]
- K. A. Antonopoulos and E. Koronaki, “Apparent and effective thermal capacitance of buildings,” Energy, vol. 23, no. 3, pp. 183–192, Mar. 1998, doi: 10.1016/S0360-5442(97)00088-1. [CrossRef] [Google Scholar]
- K. A. Antonopoulos and E. P. Koronaki, “On the dynamic thermal behaviour of indoor spaces,” Appl. Therm. Eng., vol. 21, no. 9, pp. 929–940, Jun. 2001, doi: 10.1016/S1359-4311(00)00091-0. [Google Scholar]
- K. A. Antonopoulos and E. P. Koronaki, “Effect of indoor mass on the time constant and thermal delay of buildings,” Int. J. Energy Res., vol. 24, no. 5, pp. 391–402, Apr. 2000, doi: 10.1002/(SICI)1099-114X(200004)24:5<391::AID-ER585>3.0.CO;2-L. [CrossRef] [Google Scholar]
- K. A. Antonopoulos and C. Tzivanidis, “Finitedifference prediction of transient indoor temperature and related correlation based on the building time constant,” Int. J. Energy Res., vol. 20, no. 6, pp. 507–520, Jun. 1996, doi: 10.1002/(SICI)1099-114X(199606)20:6<507::AID-ER167>3.0.CO;2-T. [CrossRef] [Google Scholar]
- F. Asdrubali, G. Baldinelli, and F. Bianchi, “A quantitative methodology to evaluate thermal bridges in buildings,” Appl. Energy, vol. 97, pp. 365–373, Sep. 2012, doi: 10.1016/j.apenergy.2011.12.054. [Google Scholar]
- E. R. Hitchin, S. R. Delaforce, and C. J. Martin, “A comparison of the measured and simulated thermal response of a simple enclosure,” Build. Environ., vol. 28, no. 2, pp. 189–199, Apr. 1993, doi: 10.1016/0360-1323(93)90052-5. [Google Scholar]
- M. E. Hoffman and M. Feldman, “Calculation of the thermal response of buildings by the total thermal time constant method,” Build. Environ., vol. 16, no. 2, pp. 71–85, Jan. 1981, doi: 10.1016/0360-1323(81)90023-8. [Google Scholar]
- P. T. Tsilingiris, “On the thermal time constant of structural walls,” Appl. Therm. Eng., vol. 24, no. 5–6, pp. 743–757, Apr. 2004, doi: 10.1016/j.applthermaleng.2003.10.015. [Google Scholar]
- A. Tadeu, I. Simões, N. Simões, and J. Prata, “Simulation of dynamic linear thermal bridges using a boundary element method model in the frequency domain,” Energy Build., vol. 43, no. 12, pp. 3685–3695, Dec. 2011, doi: 10.1016/j.enbuild.2011.10.001. [Google Scholar]
- Incropera, F.P. and DeWitt, D.P., Introduction to heat transfer, 4th edition, 4th ed. New York: John Wiley & Sons, Ltd, 2001. [Google Scholar]
- T. Widström, “Simulation of historic buildings for enhancement of preservation and energy performance – issues and methods,” Doctoral thesis, KTH, Stockholm, 2019. [Google Scholar]
- M. Abuku, H. Janssen, and S. Roels, “Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption,” Energy Build., vol. 41, no. 1, pp. 101–110, Jan. 2009, doi: 10.1016/j.enbuild.2008.07.011. [Google Scholar]
- H. Janssen, B. Blocken, S. Roels, and J. Carmeliet, “Wind-driven rain as a boundary condition for HAM simulations: Analysis of simplified modelling approaches,” Build. Environ., vol. 42, no. 4, pp. 1555–1567, Apr. 2007, doi: 10.1016/j.buildenv.2006.10.001. [Google Scholar]
- H. Janssen, B. Blocken, and J. Carmeliet, “Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation,” Int. J. Heat Mass Transf., vol. 50, no. 5–6, pp. 1128–1140, Mar. 2007, doi: 10.1016/j.ijheatmasstransfer.2006.06.048. [Google Scholar]
- B. Blocken, G. Dezsö, J. van Beeck, and J. Carmeliet, “Comparison of calculation models for wind-driven rain deposition on building facades,” Atmos. Environ., vol. 44, no. 14, pp. 1714–1725, May 2010, doi: 10.1016/j.atmosenv.2010.02.011. [Google Scholar]
- A. Kubilay, D. Derome, B. Blocken, and J. Carmeliet, “CFD simulation and validation of wind-driven rain on a building facade with an Eulerian multiphase model,” Build. Environ., vol. 61, pp. 69–81, Mar. 2013, doi: 10.1016/j.buildenv.2012.12.005. [Google Scholar]
- R. W. Lewis, P. Nithiarasu, and K. N. Seetharamu, “Transient Heat Conduction Analysis,” in Fundamentals of the Finite Element Method for Heat and Fluid Flow, Chichester, UK: John Wiley & Sons, Ltd, 2005, pp. 150–172. [CrossRef] [Google Scholar]
- P. T. Tsilingiris, “The influence of heat capacity and its spatial distribution on the transient wall thermal behavior under the effect of harmonically time-varying driving forces,” Build. Environ., vol. 41, no. 5, pp. 590–601, May 2006, doi: 10.1016/j.buildenv.2005.02.031. [Google Scholar]
- P. T. Tsilingiris, “Parametric space distribution effects of wall heat capacity and thermal resistance on the dynamic thermal behavior of walls and structures,” Energy Build., vol. 38, no. 10, pp. 1200–1211, Oct. 2006, doi: 10.1016/j.enbuild.2006.02.007. [Google Scholar]
- P. T. Tsilingiris, “Wall heat loss from intermittently conditioned spaces—The dynamic influence of structural and operational parameters,” Energy Build., vol. 38, no. 8, pp. 1022–1031, Aug. 2006, doi: 10.1016/j.enbuild.2005.11.012. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.