Open Access
Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 15007 | |
Number of page(s) | 9 | |
Section | Historical buildings | |
DOI | https://doi.org/10.1051/e3sconf/202017215007 | |
Published online | 30 June 2020 |
- European Commission, “2050 long-term strategy.” [Online](2018)Available:https://ec.europa.eu/clima/policies/strategies/2050_en. [Accessed: 17-Jan-2020]. [Google Scholar]
- European Commission, “Going climate-neutral by 2050: A strategic long-term vision for a prosperous, modern, competitive and climate-neutral EU economy”.[Online](2019)Available:https://op.europa.eu/en/publication-detail/-/publication/92f6d5bc-76bc-11e9-9f05-01aa75ed71a1. [Accessed: 17-Jan-2020]. [Google Scholar]
- M. Posani, M. D. R. Veiga, and V. P. de Freitas, “Towards Resilience and Sustainability for Historic Buildings: A Review of Envelope Retrofit Possibilities and a Discussion on Hygric Compatibility of Thermal Insulations.”, Int. J. Archit. Herit. (2019) [Google Scholar]
- G. Carbonara, “Energy efficiency as a protection tool.”, Energy Build. 95,9-12 (2015) [Google Scholar]
- E. Vereecken, L. Van Gelder, H. Janssen, and S. Roels, “Interior insulation for wall retrofitting - A probabilistic analysis of energy savings and hygrothermal risks.”, Energy Build. 89, 231-244 (2015) [Google Scholar]
- R. P. Kramer, M. P. E. Maas, M. H. J. Martens, A. W. M. van Schijndel, and H. L. Schellen, “Energy conservation in museums using different setpoint strategies: A case study for a state-of-the-art museum using building simulations.”, Appl. Energy. 158, 446-458 (2015) [Google Scholar]
- S. A. Magalhães and V. P. De Freitas, “A complementary approach for energy efficiency and comfort evaluation of renovated dwellings in Southern Europe.”, Energy Procedia. 132, 909-914 (2017) [Google Scholar]
- C. Ferreira, V. P. de Freitas, and J. M. P. Q. Delgado, “The Influence of Hygroscopic Materials on the Fluctuation of Relative Humidity in Museums Located in Historical Buildings.”, Stud. Conserv. (2019) [Google Scholar]
- G. Semprini, C. Galli, and S. Farina, “Reuse of an ancient church: Thermal aspect for integrated solutions.”, Energy Procedia. 133, 327-335 (2017) [Google Scholar]
- G. B. A. Coelho, H. E. Silva, and F. M. A. Henriques, “Calibrated hygrothermal simulation models for historical buildings.”, Build. Environ. 142, 439-450 (2018) [Google Scholar]
- F. Roberti, U. F. Oberegger, and A. Gasparella, “Calibrating historic building energy models to hourly indoor air and surface temperatures: Methodology and case study.”, Energy Build. 108, 236–243 (2015) [Google Scholar]
- F. Bergonzoni and P. M. Branchesi, “La Chiesa di San Giorgio in Poggiale.”, Cassa di Risparmio in Bologna. (1979) [Google Scholar]
- METEOTEST Meteonorm - VErsion 6.0. Meteotest, Bern, Switzerland. [Google Scholar]
- C. Jiang, M. K. Masood, Y. C. Soh, and H. Li, “Indoor occupancy estimation from carbon dioxide concentration.”, Energy Build. 131, 132-141 (2016). [Google Scholar]
- M. de Wit, “HAMBase: Heat, Air and Moisture Model for Building and Systems Evaluation, Bouwstenen.”, Bouwstenen. (2006) [Google Scholar]
- K. Kompatscher, S. Seuren, R. Kramer, J. Van Schijndel, and H. Schellen, “Energy efficient HVAC control in historical buildings: A case study for the Amsterdam Museum.”, Energy Procedia. 132, 892-896 (2017) [Google Scholar]
- H. L. Schellen and A. W. M. van Schijndel, “Setpoint control for air heating in a church to minimize moisture related mechanical stress in wooden interior parts.” Build. Simul. 4,79-86 (2011) [Google Scholar]
- Van Aarle, M. A. P., A. W. M. van Schijndel, and H. L. Schellen. “A hypocaust hot air floor heating system in the netherlands.” In 12th Symposium for Building Physics, March 29-31, 2007, Dresden, Germany. Technische Universität Dresden. pp. 206-213. [Google Scholar]
- Z. Huijbregts, R. P. Kramer, M. H. J. Martens, A. W. M. van Schijndel, and H. L. Schellen, “A proposed method to assess the damage risk of future climate change to museum objects in historic buildings.” Build. Environ. 55, 43-56 (2012) [Google Scholar]
- P. M. Congedo, C. Lorusso, M. G. de Giorgi, and D. Laforgia, “Computational fluid dynamic modeling of horizontal air-ground heat exchangers (HAGHE) for HVAC systems.” Energies. 7, 8465-8482 (2014) [Google Scholar]
- M. Derradji and M. Aiche, “Modeling the soil surface temperature for natural cooling of buildings in hot climates”, Procedia Computer Science. 32, 615-621 (2014) [Google Scholar]
- M. Schell and D. Inthout, “Ventilation Using CO 2.” ASHRAE J. 43(2), 18-29 (2001) [Google Scholar]
- CEN, E.N.13779:2007. “Ventilation for non-residential buildings–performance requirements for ventilation and room-conditioning systems. Brussels, Belgium.” (2007) [Google Scholar]
- G. R. Ruiz and C. F. Bandera, “Validation of calibrated energy models: Common errors.” Energies. (2017) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.