Open Access
Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 17005 | |
Number of page(s) | 7 | |
Section | Moisture measurements | |
DOI | https://doi.org/10.1051/e3sconf/202017217005 | |
Published online | 30 June 2020 |
- S. Amziane, F. Collet, State-of-the-Art Report of the RILEM Technical Committee 236-BBM: Bio-aggregates Based Building Materials (2017) doi:10.1007/978-94-024-1031-0. [CrossRef] [Google Scholar]
- O.F. Osanyintola, C.J. Simonson, Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact, Energy and Buildings. (2006) doi:10.1016/j.enbuild.2006.03.026. [Google Scholar]
- H. Wan, Z. Sun, G. Huang, X. Xu, J. Yu, Calculation of the maximum moisture buffering thickness of building wall layer of hygroscopic material, Building and Environment. 160 (2019) 106173. doi:10.1016/j.buildenv.2019.106173. [Google Scholar]
- M. Zhang, M. Qin, C. Rode, Z. Chen, Moisture buffering phenomenon and its impact on building energy consumption, Applied Thermal Engineering. 124, 337–345 (2017) doi:10.1016/j.applthermaleng.2017.05.173. [Google Scholar]
- S. Nielsen, A. Klebak, Realdania, Tanghuse på Læsø - Det Moderne Tanghus, 2013. https://realdania.dk/projekter/tanghuse-paa-laesoe—det-moderne-tanghus. [Google Scholar]
- B. Widera, Possible Application of Seaweed as Building Material in the Modern Seaweed House on Læsø, in: 30th International PLEA 2014 Conference (2014) doi:10.13140/RG.2.1.1638.2881. [Google Scholar]
- B.E. Pallesen, Bæredygtige Tangisoleringsmåtter fra ålegraes, Ministry of Environment and Food Denmark, (2018) https://www2.mst.dk/Udgiv/publikationer/2018/06/978-87-93710-35-1.pdf. [Google Scholar]
- S. Technology, D. Centre, Production and Properties of Insulation Mats Made from Sea Grass 2 Production of Sea Grass Insulation Mats 3 Results from Tests Carried out at the Danish Building Research Institute, Internation Conference on Energy, Environment, Ecosystems and Sustainable Development, 626–631 (2007) [Google Scholar]
- J.R. Rasmussen, J. Havenhand, P. Grønkjær, Ålegræs og klimaforandringer (2013) doi:Report 2013:45,ISSN: 1403-168x. [Google Scholar]
- Cradle to Cradle Product Innovations Institute, Cradle to Cradle Certified TM Gold: Seaweed Insulation (2018) https://cdn.c2ccertified.org/Certifications/Convert_A_S/Seaweed_Insulation/Conve_Seawe_Gold_CERT3852_2018-12-17.pdf. [Google Scholar]
- C. Rode, Combined heat and moisture transfer in building constructions, Kgs. Lyngby, Denmark, (1990) [Google Scholar]
- Y.I. Antonov, K.M. Frandsen, P. Møldrup, E. Arthur, L. Wollesen de Jonge, M. Pomianowski, R.L. Jensen, Linking Three Methods for Quantifying Water Vapor Sorption Dynamics in Bio-Based Building Materials (2020) [Google Scholar]
- E. Arthur, M. Tuller, P. Moldrup, L.W. de Jonge, Rapid and fully automated measurement of water vapor sorption isotherms: new opportunities for vadose zone research., Vadose Zone Journal. 13, 185 (2014) [CrossRef] [Google Scholar]
- E. Arthur, M. Tuller, P. Moldrup, L. Wollesen de Jonge, Evaluation of a Fully Automated Analyzer for Rapid Measurement of Water Vapor Sorption Isotherms for Applications in Soil Science, Soil Sci Soc Am J. 78, 754–760 (2014) doi:10.2136/sssaj2013.11.0481n. [Google Scholar]
- Deutsches Institut für Bautechnik, European Technical Approval: ETA-05/0008 (2010). [Google Scholar]
- D.I. Devices, Vapor Sorption Analyzer - Operator’s Manual (2016) [Google Scholar]
- CEN, DS/EN ISO 12571:2013 Hygrothermal performance of building materials and products - Determination of hygroscopic properties (2013) [Google Scholar]
- J. Carmeliet, F. Descamps, G. Houvenaghel, A multiscale network model for simulating moisture transfer properties of porous media, Transport in Porous Media (1999) doi:10.1023/A:1006500716417. [Google Scholar]
- E. Arthur, M. Tuller, P. Moldrup, L.W. de Jonge, Clay content and mineralogy, organic carbon and cation exchange capacity affect water vapour sorption hysteresis of soil, European Journal of Soil Science. (2020) doi:10.1111/ejss.12853. [PubMed] [Google Scholar]
- Y. Jiang, M. Lawrence, A. Hussain, M. Ansell, P. Walker, Comparative moisture and heat sorption properties of fibre and shiv derived from hemp and flax, Cellulose. 26, 823–843 (2019). doi:10.1007/s10570-018-2145-0. [Google Scholar]
- F. Collet, J. Chamoin, S. Pretot, C. Lanos, Comparison of the hygric behaviour of three hemp concretes, Energy and Buildings. (2013) doi:10.1016/j.enbuild.2013.03.010. [PubMed] [Google Scholar]
- S. Ouertani, S. Azzouz, L. Hassini, A. Koubaa, A. Belghith, Moisture sorption isotherms and thermodynamic properties of Jack pine and palm wood: Comparative study, Industrial Crops and Products. 56, 200–210 (2014) doi:10.1016/j.indcrop.2014.03.004. [Google Scholar]
- R.D.P. Andrade, L.M. Roberto, C.E.C. Pérez, Models of sorption isotherms for food: Uses and limitations | Modelos de isotermas de sorcion para alimentos: Usos y limitaciones, Vitae. 18, 325–334 (2011). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.