Open Access
Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 17004 | |
Number of page(s) | 7 | |
Section | Moisture measurements | |
DOI | https://doi.org/10.1051/e3sconf/202017217004 | |
Published online | 30 June 2020 |
- P-A. Chabriac, Mesure du comportement hygrothermique du pisé. PhD thesis (2014) [Google Scholar]
- A. Fabbri, J-C. Morel, D. Gallipoli, Assessing the performance of earth building materials: a review of recent development. RILEM Technical Letters, 3, 46-58 (2018) [CrossRef] [Google Scholar]
- M. Hall, D. Allinson, Transient numerical and physical modelling of temperature profile evolution in stabilised rammed earth walls. Appl. Therm. Eng., 30, 433-441 (2010) [Google Scholar]
- L. Soudani, A. Fabbri, J-C. Morel, M. Woloszyn, P-A. Chabriac, H. Wong, A-C. Grillet, Assessment of the validity of some common assumptions in hygrothermal modelling of earth based materials, Ener. and Build., 116, 498-511 (2016) [Google Scholar]
- J. Kwiatkowski, M. Woloszyn, J-J. Roux, Modelling of hysteresis influence on mass transfer in building materials. Build. and Env., 44, 633-642 (2009) [CrossRef] [Google Scholar]
- D. Lelievre, T. Colinart, P. Glouannec, Hygrothermal behavior of bio-based building materials including hysteresis effect: Experimental and numerical analysis, Ener. and Build., 84, 617-627 (2014) [CrossRef] [Google Scholar]
- J. Goffart, M. Rabouille, N. Mendes, Uncertainty and sensitivity analysis applied to hygrothermal simulation of a brick building in a hot and humid climate, J. Build. Perform. Simu., 10, 37-57 (2017) [CrossRef] [Google Scholar]
- A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola, Global Sensitivity Analysis. The Primer, Wiley (2008) [Google Scholar]
- A. Saltelli, P. Annoni, How to avoid a perfunctory sensitivity analysis, Environ. Modell. Softw. 25, 1508-1517 (2010) [CrossRef] [Google Scholar]
- I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulat., 55, 271–280 (2001) [CrossRef] [Google Scholar]
- S. Tarantola, D. Gatelli, T. Mara, Random balance designs for the estimation of first order global sensitivity indices, Reliab. Eng. Syst. Safe., 91, 717-727 (2006) [Google Scholar]
- J. Herman, W. Usher, SALib: An open-source Python library for Sensitivity Analysis, J. Open Source Softw., 2, 97 (2017) [CrossRef] [Google Scholar]
- J.C.C. Helton, F.J.J Davis, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliab. Eng. Syst. Safe., 81, 23-69 (2003) [CrossRef] [Google Scholar]
- E. Plischke, An effective algorithm for computing global sensitivity indices (EASI), Reliab. Eng. Syst. Safe., 95, 354-360 (2010) [CrossRef] [Google Scholar]
- J-Y. Tissot, C. Prieur, Bias correction for the estimation of sensitivity indices based on random balance designs, Reliab. Eng. Syst. Safe., 107, 205-213 (2012) [Google Scholar]
- Campbell Scientific Inc., Instruction Manual: CS215 Temperature and Relative Humidity Probe. https://s.campbellsci.com/documents/br/manuals/cr1000.pdf (2013) [Google Scholar]
- E. A Guggenheim, Applications of statistical mechanics, Clarendon Press (1966) [Google Scholar]
- B. Seng, S. Lorente, C. Magniont, Scale analysis of heat and moisture transfer through bio-based materials – Application to hemp concrete, Ener. and Build., 155, 546-558 (2017) [CrossRef] [Google Scholar]
- R. Bui, M. Labat, S. Lorente, Impact of the occupancy scenario on the hygrothermal performance of a room, Build. and Env., 160, 106-178 (2019) [Google Scholar]
- H. M. Künzel, Simultaneous Heat and Moisture Transport in Building Components. Technical Report (1995) [Google Scholar]
- Afnor, EN 15026 – Hygrothermal performance of building components and building elements – Assessment of moisture transfer by numerical simulation (2007) [Google Scholar]
- L. Soudani, Modelling and experimental validation of the hygrothermal performances of earth as building material. Phd thesis (2017) [Google Scholar]
- S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Cerny, Z. Pavlik, C. Hall, K. Kumaran, L. Pel, R. Plagge, Interlaboratory comparison of hygric properties of porous building materials, J. Build. Phys., 27, 307-325 (2004) [Google Scholar]
- C. Feng, H. Janssen, Y. Feng, Q. Meng, Hyric properties of porous building materials: analysis of measurement repeatability and reproducibility, Build. and Env., 85, 160-172 (2015) [CrossRef] [Google Scholar]
- R. Bui, M. Labat and J-E. Aubert, Comparison of the Saturated Salt Solution and the Dynamic Vapor Sorption techniques based on the measured sorption isotherm of barley straw, Cons. and Build. Mat., 141, 140-151 (2017) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.