Open Access
Issue
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
Article Number 20009
Number of page(s) 8
Section Microbial damage
DOI https://doi.org/10.1051/e3sconf/202017220009
Published online 30 June 2020
  1. C. Shrubsole, A. Macmillan, M. Davies, N May, 100 Unintended consequences of policies to improve the energy efficiency of the UK housing stock. INDOOR AND BUILT ENVIRONMENT, 23 (3) 340 – 352, (2014) [CrossRef] [Google Scholar]
  2. N. May, Breathability: The Key to Building Performance, (2005) [Google Scholar]
  3. DECC. The Carbon Plan: Delivering our low carbon future, Energy, (2011) [Google Scholar]
  4. W. Anderson, J. Robinson, Warmer Bath: A guide to improving the energy efficiency of traditional homes in the city of Bath, Bath Preservation Trust and the Centre for Sustainable Energy, (2011) [Google Scholar]
  5. E. Biseniece, R. Freimanis, R. Purvins, A. Gravelsins, A. Pumpurs, & A. Blumberga, Study of Hygrothermal Processes in External Walls with Internal Insulation, Environmental and Climate Technologies, 22(1), pp. 22–41, (2018) [CrossRef] [Google Scholar]
  6. Ü. Alev, T. Kalamees, Avoiding mould growth in an interiorly insulated log wall. Building and Environment, 105, 104–115, (2016) [Google Scholar]
  7. U.S. Environmental Protection Agency. Moisture Control Guidance for Building Design, Construction and Maintenance, pp. 1-20, (2013) [Google Scholar]
  8. BRE on behalf of CEW, Post installation performance of cavity wall & external wall insulation. Constructing Excellence Wales, (2016) [Google Scholar]
  9. Changeworks, Solid Wall Insulation in Scotland. Exploring barriers, solutions and new approaches, pp. 5-18, (2012) [Google Scholar]
  10. BRE, Solid wall heat losses and the potential for energy saving, 44(0), pp. 136, (2014) [Google Scholar]
  11. W.J. Fisk, Q. Lei-Gomez, M.J. Mendell, Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air, 17, pp. 284–296, (2007) [CrossRef] [PubMed] [Google Scholar]
  12. World Health Organisation. Dampness and Mould. WHO Guidelines for Indoor Air Quality. Journal of Biomedical Semantics, 2011, pp. 2, 7-41 [PubMed] [Google Scholar]
  13. B.J. Green et al., Airborne fungal fragments and allergenicity. Medical Mycology, 44 (Suppl. 1), pp. S245–S255, (2016) [Google Scholar]
  14. T.L. Brasel et al. Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment. Applied and Environmental Microbiology, 71, pp. 7376–7388, (2005) [CrossRef] [PubMed] [Google Scholar]
  15. D. Caillaud, B. Leynaert, M. Keirsbulck, R. Nadif, Indoor mould exposure, asthma and rhinitis: Findings from systematic reviews and recent longitudinal studies, European Respiratory Review, 27, pp. 1-18, (2018) [Google Scholar]
  16. R.K. Bush, J.M. Portnoy, A. Saxon et al. The medical effects of mold exposure. J Allergy Clin Immunol, 117: pp. 326–333. (2006) [CrossRef] [PubMed] [Google Scholar]
  17. BSI, BS ISO 16000-16: 2008 Indoor Air: Detection and enumeration of moulds — Sampling by filtration, (2008) [Google Scholar]
  18. BSI, BS ISO 16000-17: 2008 Indoor Air: Detection and enumeration of moulds — Culture-based method, (2008) [Google Scholar]
  19. BSI, BS ISO 16000-18: 2011 Indoor Air: Detection and enumeration of moulds —Sampling by impaction, (2011) [Google Scholar]
  20. BSI, BS ISO 16000-19: 2014 Indoor Air: Sampling strategy for moulds, (2014) [Google Scholar]
  21. BSI, BS ISO 16000-20: 2014 Indoor Air: Detection and enumeration of moulds - Determination of total spore count, (2014) [Google Scholar]
  22. EMSL, MICROBIOLOGY SAMPLING GUIDE. EMSL Analytical, 1-28, (2014) [Google Scholar]
  23. ASTM. Standard Guide for Assessment Of Fungal Growth in Buildings, D7338 − 14, i, pp 1–9, (2014) [Google Scholar]
  24. T. Verdier, M. Coutand, A. Bertron, & C. Roques, A review of indoor microbial growth across building materials and sampling and analysis methods. Building and Environment, 80, pp. 136–149, (2014) [Google Scholar]
  25. D. Méheust, et al., Indoor fungal contamination: health risks and measurement methods in hospitals, homes and workplaces. Critical Reviews in Microbiology, 40 (3), pp. 248-260, (2014) [CrossRef] [PubMed] [Google Scholar]
  26. A.M. Swaebly, M.C. Christensen, Molds in house dust, furniture stuffing, and in the air within homes. J. Allergy Clin. Immunol. 23 (4), 370–374, (1952) [Google Scholar]
  27. S.C. Yang, et al., Sampling and analysis of indoor microorganisms/edited by Chin S. Yang, Patricia A. Heinsohn., Wiley-Interscience, (2007) [CrossRef] [Google Scholar]
  28. W.C. Haig, G.W. Mackay, T.J. Walker, & C. Williams, Bioaerosol sampling: sampling mechanisms, bioefficiency and field studies. Journal of Hospital Infection, 93(3), pp. 242–255, (2016) [CrossRef] [Google Scholar]
  29. S.L. Smith, S.T. Hill, Infuence of temperature and water activity on germination and growth of Aspergillus restrictus and A. versicolor. Trans Br. Mycol. Soc. 79 (3), 558-560, (1982). [CrossRef] [Google Scholar]
  30. W.M. Thompson, et al. Method and test system for evaluation of bioaerosol samplers, Journal of Aerosol Science, 25(8), pp. 1579–1593, (1994) [Google Scholar]
  31. K. Tucker, et al. Biomechanics of conidial dispersal in the toxic mold Stachybotrys chartarum, Fungal Genetics and Biology, 44(7), pp. 641–647, (2007) [CrossRef] [Google Scholar]
  32. M. Clauß, Particle size distribution of airborne micro-organisms in the environment – a review. (65), 77–100, (2015) [Google Scholar]
  33. F.V. Marchisio, R. Caramiello, L. Mariuzza,. Outdoor airborne fungi: sampling strategies. AERIOBIOLOGIA5, 5(2), pp. 145–153, (1989) [CrossRef] [Google Scholar]
  34. A. Adhikari, et al., Effect of different air flow rates on the collection of atmospheric mold spores of different sizes by a slit impactor, WIT Transactions on Ecology and the Environment, 211, pp. 243–253, (2017) [CrossRef] [Google Scholar]
  35. S.A. Grinshpun, Biological Aerosols. In I. Agranovski, (ed), Aerosols - Science and Technology, Pp 379-396, (2010) [Google Scholar]
  36. G. Mainelis, M. Tabayoyong, The Effect of Sampling Time on the Overall Performance of Portable Microbial Impactors. Aerosol Science and Technology, 44. pp 75–82, (2010) [CrossRef] [Google Scholar]
  37. Efthymiopoulos S. Assessment of mould growth within elements of exterior constructions. MSc dissertation. UCL. (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.