Open Access
Issue
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
Article Number 20010
Number of page(s) 8
Section Microbial damage
DOI https://doi.org/10.1051/e3sconf/202017220010
Published online 30 June 2020
  1. Vlaams Instituut voor Bio-Ecologisch Bouwen & Wonen, Hout zonder chemische verduurzaming, 2007. [Google Scholar]
  2. S. Winter, Wood Is Good ?! – Worldwide Threats and Consequent Opportunities for Building with Wood, in: Proc. WCTE 2016 World Conf. Timber Eng. Vienna/ Austria, August 22-25, 2016, 2016: pp.37–45. [Google Scholar]
  3. New Zealand Parliament, Leaky buildings, 2002. [Google Scholar]
  4. G. Finch, B. Hubbs, Peng, M.J. Dell, Rainscreen walls: Long-Term Performance and Field Monitoring in Coastal British Columbia, in: Symp. Build. Envel. Technol., 2008. [Google Scholar]
  5. N. Hurel, Impact of air infiltration on buildings’ performance: focus on the experimental study within timber frame walls, Université Grenoble Alpes, 2006. [Google Scholar]
  6. J. Langmans, Feasibility of Exterior Air Barriers in Timber Frame Constructions, KU Leuven, Belgium. PhD thesis., 2013. [Google Scholar]
  7. S.D. Platt, C.J. Martin, S.M. Hunt, C.W. Lewis, Damp housing, mould growth, and symptomatic health state., BMJ. 298 (1989) 1673–8. https://doi.org/10.1136/bmj.298.6689.1673. [Google Scholar]
  8. IEA-Annex 14, Condensation and energy. Guidelines & Practice, Acco, Leuven, 1990. [Google Scholar]
  9. T. Stienen, O. Schmidt, T. Huckfeldt, Wood decay by indoor basidiomycetes at different moisture and temperature, Holzforschung. 68 (2014) 9–15. https://doi.org/10.1515/hf-2013-0065. [CrossRef] [Google Scholar]
  10. L. Meyer, C. Brischke, Fungal decay at different moisture levels of selected European-grown wood species, Int. Biodeterior. Biodegrad. 103 (2015) 23–29. https://doi.org/10.1016/j.ibiod.2015.04.009. [CrossRef] [Google Scholar]
  11. H. Viitanen, Modelling the Time Factor in the Development of Brown Rot Decay in Pine and Spruce Sapwood - The Effect of Critical Humidity and Temperature Conditions, Holzforschung. 51 (1997) 99–106. [CrossRef] [Google Scholar]
  12. H. Saito, K. Fukuda, T. Sawachi, Integration model of hygrothermal analysis with decay process for durability assessment of building envelopes, Build. Simul. 5 (2012) 315–324. https://doi.org/10.1007/s12273-012-0081-8. [Google Scholar]
  13. C. Brischke, A. Soetbeer, L. Meyer-Veltrup, The minimum moisture threshold for wood decay by basidiomycetes revisited. A review and modified pile experiments with Norway spruce and European beech decayed by Coniophora puteana and Trametes versicolor, Holzforschung. 71 (2017) 893–903. https://doi.org/10.1515/hf-2017-0051. [CrossRef] [Google Scholar]
  14. J. Van den Bulcke, J. Van Acker, M. Stevens, Laboratory testing and computer simulation of blue stain growth on and in wood coatings, Int. Biodeterior. Biodegrad. 59 (2007) 137–147. https://doi.org/10.1016/j.ibiod.2006.08.009. [CrossRef] [Google Scholar]
  15. M. Vanpachtenbeke, J. Van Den Bulcke, J. Van Acker, S. Roels, Hygrothermal performance of timber frame walls with brick veneer cladding: a parameter analysis, in: Proc. 12th Symp. Build. Phys. NSB 2020, Tallinn, Estonia, 2020. [Google Scholar]
  16. C. Brischke, A.O. Rapp, R. Bayerbach, Measurement system for long-term recording of wood moisture content with internal conductively glued electrodes, Build. Environ. 43 (2008) 1566–1574. https://doi.org/10.1016/j.buildenv.2007.10.002. [Google Scholar]
  17. C.R. Boardman, S. V Glass, P.K. Lebow, Simple and accurate temperature correction for moisture pin calibrations in oriented strand board, Build. Environ. 112 (2017) 250–260. https://doi.org/10.1016/j.buildenv.2016.11.039. [Google Scholar]
  18. M. Vanpachtenbeke, Timber frame walls with brick veneer cladding: reliability to fungal decay, KU Leuven, Belgium. PhD thesis., 2019. [Google Scholar]
  19. W. Li, J. Van den Bulcke, I. De Windt, N. Defoirdt, J. Dhaene, M. Dierick, H. Sol, J. Van Acker, Relating MOE decrease and mass loss due to fungal decay in plywood and MDF using resonalyser and X-ray CT scanning, Int. Biodeterior. Biodegradation. 110 (2016) 113–120. https://doi.org/10.1016/j.ibiod.2016.03.012. [Google Scholar]
  20. L. Machek, H. Militz, R. Sierra-Alvarez, The influence of wood moisture content on dynamic modulus of elasticity measurements in durability testing, Holzforsch. Und Holzverwertung. 53 (2001) 97–100. [Google Scholar]
  21. A. Krause, A. Pfeffer, H. Militz, The use of non-destructive methods for the evaluation of fungal decay in field testing by dynamic vibration, in: Futur. Qual. Control Wood Wood Prod., 2010: pp. 4–7. [Google Scholar]
  22. H. Viitanen, T. Toratti, L. Makkonen, R. Peuhkuri, T. Ojanen, L. Ruokolainen, J. Räisänen, Towards modelling of decay risk of wooden materials, Eur. J. Wood Wood Prod. 68 (2010) 303–313. https://doi.org/10.1007/s00107-010-0450-x. [CrossRef] [Google Scholar]
  23. M. Guizzardi, J. Carmeliet, D. Derome, Risk analysis of biodeterioration of wooden beams embedded in internally insulated masonry walls, Constr. Build. Mater. 99 (2015) 159–168. https://doi.org/10.1016/j.conbuildmat.2015.08.022. [Google Scholar]
  24. A. Nicolai, Modeling and Numerical Simulation of Salt Transport and Phase Transitions in Unsaturated Porous Building Materials, Syracuse University, USA. PhD thesis., 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.