Open Access
Issue
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
Article Number 21008
Number of page(s) 6
Section Advanced building envelope
DOI https://doi.org/10.1051/e3sconf/202017221008
Published online 30 June 2020
  1. Hayat H, Griffiths T, Brennan D, Lewis RP, Barclay M, Weirman C, et al. The State-of-the-Art of Sensors and Environmental Monitoring Technologies in Buildings. Sensors. 2019;19(17):3648. [CrossRef] [Google Scholar]
  2. Ostachowicz W, Soman R, Malinowski P. Optimization of sensor placement for structural health monitoring: A review. Structural Health Monitoring. 2019;18(3):963-88. [CrossRef] [Google Scholar]
  3. Sanchez J, Andrade C, Fullea J. Hydrothermal monitoring using embedded sensors of the actual roof system of the Prado Museum. Constr Build Mater. 2010;24(12):2579-89. [Google Scholar]
  4. Udwadia F. OPTIMAL SENSOR LOCATIONS FOR GEOTECHNICÀL AND STROCTUR. iL IDENTIFICATION. 1984. [Google Scholar]
  5. Kammer DC. Sensor placement for on-orbit modal identification and correlation of large space structures. Journal of Guidance, Control, and Dynamics. 1991;14(2):251-9. [CrossRef] [Google Scholar]
  6. Papadimitriou C, Beck JL, Au S-K. Entropy-based optimal sensor location for structural model updating. Journal of Vibration and Control. 2000;6(5):781-800. [CrossRef] [Google Scholar]
  7. Heredia‐Zavoni E, Montes‐Iturrizaga R, Esteva L. Optimal instrumentation of structures on flexible base for system identification. Earthquake engineering & structural dynamics. 1999;28(12):1471-82. [Google Scholar]
  8. Yoganathan D, Kondepudi S, Kalluri B, Manthapuri S. Optimal sensor placement strategy for office buildings using clustering algorithms. Energy and Buildings. 2018;158:1206-25. [Google Scholar]
  9. Eliades DG, Michaelides MP, Panayiotou CG, Polycarpou MM. Security-oriented sensor placement in intelligent buildings. Build Environ. 2013;63:114-21. [Google Scholar]
  10. Weisbin CR, Rodriguez G, Elfes A, Smith JH. Toward a systematic approach for selection of NASA technology portfolios. Systems engineering. 2004;7(4):285-302. [CrossRef] [Google Scholar]
  11. Marteinsson B. Durability and the factor method of ISO 15686-1. Building research & information. 2003;31(6):416-26. [CrossRef] [Google Scholar]
  12. Köppen W. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geographische Zeitschrift. 1900;6(11.H):593-611. [Google Scholar]
  13. 13788: EI. Hygrothermal performance of building components and building elements–internal surface temperature to avoid critical surface humidity and interstitial condensation–calculation methods (European Committee for Standardization). 2012. [Google Scholar]
  14. Noreng K. Kompakte tak. In: Byggforskserien, editor. 2018. [Google Scholar]
  15. Ramstad T, J.E. T. Takformer, taktyper og oppbygning. In: Byggforskserien, editor. 2018. [Google Scholar]
  16. Noreng K, Brevik B, Jelle BP. En temaveileder. Flate tak 2008. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.