Open Access
Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 21007 | |
Number of page(s) | 5 | |
Section | Advanced building envelope | |
DOI | https://doi.org/10.1051/e3sconf/202017221007 | |
Published online | 30 June 2020 |
- S. Mirrahimi, M. F. Mohamed, L. C. Haw, N. L. N. Ibrahim, W. F. M. Yusoff & A. Aflaki, The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate, Renew. Sustain. Energy Rev., vol. 53, pp. 1508–1519, (2016). [CrossRef] [Google Scholar]
- R. Diao, L. Sun & F. Yang, Thermal performance of building wall materials in villages and towns in hot summer and cold winter zone in China, Appl. Therm. Eng., vol. 128, pp. 517–530, (2018). [Google Scholar]
- X. Zhou, F. Zheng, H. Li & C. Lu, An environmentfriendly thermal insulation material from cotton stalk fibers, Energy Build., vol. 42, no. 7, pp. 1070–1074, (2010). [Google Scholar]
- B. P. Jelle, Traditional, state-of-the-art and future thermal building insulation materials and solutions–Properties, requirements and possibilities, Energy Build., vol. 43, no. 10, pp. 2549–2563, (2011). [Google Scholar]
- H. Binici, O. Aksogan, M. N. Bodur, E. Akca & S. Kapur, Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials, Constr. Build. Mater., vol. 21, no. 4, pp. 901–906, (2007). [Google Scholar]
- T. M. I. Mahlia, B. N. Taufiq & H. H. Masjuki, Correlation between thermal conductivity and the thickness of selected insulation materials for building wall, Energy Build., vol. 39, no. 2, pp. 182–187, (2007). [Google Scholar]
- M. R. Hall, K. B. Najim & C. J. Hopfe, Transient thermal behaviour of crumb rubber-modified concrete and implications for thermal response and energy efficiency in buildings, Appl. Therm. Eng., vol. 33, pp. 77–85, (2012) [Google Scholar]
- T. Li, M. Zhu, Z. Yang, J. Song, J. Dai, Y. Yao, W. Luo, G. Pastel, B. Yang & L. Hu, Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation, Adv. Energy Mater., vol. 6, no. 22, p. 1601122, (2016). [Google Scholar]
- G. Wei, Y. Liu, X. Zhang, F. Yu & X. Du, Thermal conductivities study on silica aerogel and its composite insulation materials, Int. J. Heat Mass Transf., vol. 54, no. 11–12, pp. 2355–2366, (2011). [Google Scholar]
- B. Abu-Jdayil, A.-H. Mourad, W. Hittini, M. Hassan & S. Hameedi, Traditional, state-of-the-art and renewable thermal building insulation materials: An overview, Constr. Build. Mater., vol. 214, pp. 709–735, (2019). [Google Scholar]
- Z. O. Pehlivanlı, İ. Uzun, Z. P. Yücel & İ. Demir, The effect of different fiber reinforcement on the thermal and mechanical properties of autoclaved aerated concrete, Constr. Build. Mater., vol. 112, pp. 325–330, (2016). [Google Scholar]
- N. Narayanan, K. Ramamurthy, Structure and properties of aerated concrete: a review, Cem. Concr. Compos., vol. 22, no. 5, pp. 321–329, (2000). [Google Scholar]
- M. Deyazada, B. Vandoren, D. Dragan & H. Degée, Experimental investigations on the resistance of masonry walls with AAC thermal break layer, Constr. Build. Mater., vol. 224, pp. 474–492, (2019). [Google Scholar]
- N. Uddin, M. A. Mousa & F. H. Fouad, Impact behavior of hybrid fiber-reinforced polymer (FRP)/autoclave aerated concrete (AAC) panels for structural applications, in Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, Elsevier, 2013, pp. 247–271. [CrossRef] [Google Scholar]
- Z. O. Pehlivanlı, I. Uzun & İ. Demir, Mechanical and microstructural features of autoclaved aerated concrete reinforced with autoclaved polypropylene, carbon, basalt and glass fiber, Constr. Build. Mater., vol. 96, pp. 428– 433, (2015). [Google Scholar]
- X. Yang, Y. Sun, D. Shi & J. Liu, Experimental investigation on mechanical properties of a fiberreinforced silica aerogel composite, Mater. Sci. Eng. A, vol. 528, no. 13–14, pp. 4830–4836, (2011). [CrossRef] [Google Scholar]
- P. Zhai, X. F. Duan, Q. L. Zhang, H. S. Wang, H. H. Cheng & X. H. Zhang, Characterization of SiO2 Aerogel/SiO2 Fiber Composites Prepared by Sol-Gel Method, in Key Engineering Materials, 2016, vol. 697, pp. 409–413. [CrossRef] [Google Scholar]
- B. Yuan, S. Ding, D. Wang, G. Wang & H. Li, Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming, Mater. Lett., vol. 75, pp. 204–206, (2012). [Google Scholar]
- Y. Wang, J. Huang, D. Wang, Y. Liu, Z. Zhao & J. Liu, Experimental investigation on thermal conductivity of aerogel-incorporated concrete under various hygrothermal environment, Energy, vol. 188, p. 115999, (2019). [CrossRef] [Google Scholar]
- S. Ng, B. P. Jelle, L. I. C. Sandberg, T. Gao & Ó. H. Wallevik, Experimental investigations of aerogelincorporated ultra-high performance concrete, Constr. Build. Mater., vol. 77, pp. 307–316, (2015). [Google Scholar]
- S.-Q. Tian et al., Experimental determination and fractal modeling of the effective thermal conductivity of autoclave aerated concrete (AAC) impregnated with paraffin for improved thermal storage performance, Appl. Therm. Eng., vol. 163, p. 114387, (2019). [Google Scholar]
- D. Hua, J. Tang, J. Jiang, Z. Gu, L. Dai & X. Zhu, Controlled grafting modification of silica gel via RAFT polymerization under ultrasonic irradiation, Mater. Chem. Phys., vol. 114, no. 1, pp. 402–406, (2009). [Google Scholar]
- Q. Zhang, Q. Zeng, D. C. Zheng, J. Wang & S. L. Xu, Oven dying kinetics and status of cement-based porous materials for in-lab microstructure investigation, Cem. Res., vol. 30, no. 5, pp. 204–215, (2018). [CrossRef] [Google Scholar]
- B. Adl‐Zarrabi, L. Boström & U. Wickström, Using the TPS method for determining the thermal properties of concrete and wood at elevated temperature, Fire Mater. An Int. J., vol. 30, no. 5, pp. 359–369, (2006). [Google Scholar]
- H.-Q. Jin, X.-L. Yao, L.-W. Fan, X. Xu & Z.-T. Yu, Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content, Int. J. Heat Mass Transf., vol. 92, pp. 589–602, (2016). [CrossRef] [Google Scholar]
- E. T. Afriyie, P. Karami, P. Norberg & K. Gudmundsson, Textural and thermal conductivity properties of a low density mesoporous silica material, Energy Build., vol. 75, pp. 210–215, (2014). [Google Scholar]
- E. Cuce, P. M. Cuce, C. J. Wood & S. B. Riffat, Toward aerogel based thermal superinsulation in buildings: a comprehensive review, Renew. Sustain. Energy Rev., vol. 34, pp. 273–299, (2014). [CrossRef] [Google Scholar]
- Z. Zhang, J. L. Provis, A. Reid & H. Wang, Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Concr. Compos., vol. 62, pp. 97–105, (2015). [Google Scholar]
- D. Bouvard et al., Characterization and simulation of microstructure and properties of EPS lightweight concrete, Cem. Concr. Res., vol. 37, no. 12, pp. 1666–1673, (2007). [CrossRef] [Google Scholar]
- K.-H. Yang, K.-H. Lee, J.-K. Song & M.-H. Gong, Properties and sustainability of alkali-activated slag foamed concrete, J. Clean. Prod., vol. 68, pp. 226–233, (2014). [Google Scholar]
- A. A. Sayadi, J. V Tapia, T. R. Neitzert & G. C. Clifton, Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete, Constr. Build. Mater., vol. 112, pp. 716–724, (2016). [Google Scholar]
- M. Albayrak, A. Yörükoğlu, S. Karahan, S. Atlıhan, H. Y. Aruntaş & İ. Girgin, Influence of zeolite additive on properties of autoclaved aerated concrete, Build. Environ., vol. 42, no. 9, pp. 3161–3165, (2007). [Google Scholar]
- P. Li, H. Wu, Y. Liu, J. Yang, Z. Fang & B. Lin, Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete, Constr. Build. Mater., vol. 205, pp. 529–542, (2019). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.