Open Access
Issue
E3S Web Conf.
Volume 173, 2020
2020 5th International Conference on Advances on Clean Energy Research (ICACER 2020)
Article Number 03001
Number of page(s) 5
Section Energy Utilization and Conversion Technology
DOI https://doi.org/10.1051/e3sconf/202017303001
Published online 09 June 2020
  1. Kuprys, A. & Gatautis, R. Comparison refurbishment models of district heating networks. J. Civ. Eng. Manag. 20, 11–20 (2014). [CrossRef] [Google Scholar]
  2. Delangle, A., Lambert, R. S. C., Shah, N., Acha, S. & Markides, C. N. Modelling and optimising the marginal expansion of an existing district heating network. Energy 140, 209–223 (2017). [CrossRef] [Google Scholar]
  3. Hou, J. et al. Implementation of expansion planning in existing district energy system: A case study in China. Appl. Energy 211, 269–281 (2018). [Google Scholar]
  4. Sayegh, M. A. et al. Heat pump placement, connection and operational modes in European district heating. Energy Build. 166, 122–144 (2018). [Google Scholar]
  5. Brange, L., Englund, J. & Lauenburg, P. Prosumers in district heating networks – A Swedish case study. Appl. Energy 164, 492–500 (2016). [Google Scholar]
  6. Vivian, J. et al. Evaluating the cost of heat for end users in ultra low temperature district heating networks with booster heat pumps. Energy (2018). doi:10.1016/j.energy.2018.04.081 [Google Scholar]
  7. Badami, M., Fonti, A., Carpignano, A. & Grosso, D. Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach. Energy 144, 826–838 (2018). [CrossRef] [Google Scholar]
  8. Von Rhein, J., Henze, G. P., Long, N., & Fu, Y. (2019). Development of a topology analysis tool for fifth-generation district heating and cooling networks. Energy Conversion and Management, 196, 705–716. doi:10.1016/j.enconman.2019.05.066 [Google Scholar]
  9. Wang, H., Wang, H., Zhou, H. & Zhu, T. Modeling and optimization for hydraulic performance design in multi-source district heating with fluctuating renewables. Energy Convers. Manag. 156, 113–129 (2018). [Google Scholar]
  10. Turski, M., Nogaj, K., & Sekret, R. (2019). The use of a PCM heat accumulator to improve the efficiency of the district heating substation. Energy, 187, 115-885. doi:10.1016/j.energy.2019.115885 [CrossRef] [Google Scholar]
  11. Chicherin, S., Junussova, L. & Junussov, T. Minimizing the supply temperature at the district heating plant – dynamic optimization. E3S Web Conf. 118, (2019). [Google Scholar]
  12. Tunzi, M., Boukhanouf, R., Li, H., Svendsen, S. & Ianakiev, A. Improving thermal performance of an existing UK district heat network: A case for temperature optimization. Energy Build. 158, 1576–1585 (2018). [Google Scholar]
  13. Chicherin, S. V. Comparison of a district heating system operation based on actual data – Omsk city, Russia, case study. International Journal of Sustainable Energy, 2019, 38(6), 603-614. doi:10.1080/14786451.2018.1548466 [Google Scholar]
  14. Im, Y.-H. & Liu, J. Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model. Energy 153, 988–999 (2018). [CrossRef] [Google Scholar]
  15. Kabalina, N., Costa, M., Yang, W. & Martin, A. Impact of a reduction in heating, cooling and electricity loads on the performance of a polygeneration district heating and cooling system based on waste gasification. Energy 151, 594–604 (2018). [CrossRef] [Google Scholar]
  16. Shan, X., Wang, P. & Lu, W. The reliability and availability evaluation of repairable district heating networks under changeable external conditions. Appl. Energy 203, 686–695 (2017). [Google Scholar]
  17. Chicherin, S. District Heating System Performance Charasteristics (Omsk, Russia, Nov. 2017). Mendeley Data, v1 (2017). doi:10.17632/4tgypy6hhf.1 [Google Scholar]
  18. Björnebo, L., Spatari, S. & Gurian, P. L. A greenhouse gas abatement framework for investment in district heating. Appl. Energy 211, 1095–1105 (2018). [Google Scholar]
  19. Chicherin, S., Volkova, A., & Latõšov, E. GIS-based optimisation for district heating network planning. Energy Procedia, 2018, 149, 635-641 [Google Scholar]
  20. Ayele, G. T., Haurant, P., Laumert, B. & Lacarrière, B. An extended energy hub approach for load flow analysis of highly coupled district energy networks: Illustration with electricity and heating. Appl. Energy 212, 850–867 (2018). [Google Scholar]
  21. Cai, H., You, S., Wang, J., Bindner, H. W. & Klyapovskiy, S. Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis. Energy 150, 938–949 (2018). [CrossRef] [Google Scholar]
  22. Junussova, L. R., & Chicherin, S. V. (2019). Improving a water treatment and a heating performance of the water-to-water heat pump: misallocation and available solutions. IOP Conference Series: Earth and Environmental Science, 288, 012092. doi:10.1088/1755-1315/288/1/012092 [CrossRef] [Google Scholar]
  23. Junussova, L. R., Chicherin, S. V. (2019). Method of Aluminum Salts Extraction from Wastewater Using Desalination Technology: Syr Darya River Case Study. IOP Conference Series: Earth and Environmental Science, 288, 012008. doi:10.1088/1755-1315/288/1/012008 [CrossRef] [Google Scholar]
  24. Zbaraz L.I., Chicherin S. V. Configuring a district heating plant under reconstruction: optimum quantity of boiler units. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2019. V. 330.7. 62–70 doi:10.18799/24131830/2019/7/2177. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.