Open Access
E3S Web Conf.
Volume 181, 2020
2020 5th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2020)
Article Number 01004
Number of page(s) 5
Section Clean and Renewable Energy
Published online 24 July 2020
  1. K. R. S. Pamintuan, A. J. S. Gonzales, B. M. M. Estefanio, and B. L. S. Bartolo, “Simultaneous phytoremediation of Ni2+ and bioelectricity generation in a plant-microbial fuel cell assembly using water hyacinth (Eichhornia crassipes),” IOP Conf. Ser. Earth Environ. Sci., vol. 191, p. 012093, 2018. [CrossRef] [Google Scholar]
  2. P. Chiranjeevi, G. Mohanakrishna, and S. Venkata Mohan, “Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through CO2sequestration,” Bioresour. Technol., vol. 124, pp. 364–370, 2012. [Google Scholar]
  3. G. N. Nikhil, D. N. S. Krishna Chaitanya, S. Srikanth, Y. V. Swamy, and S. Venkata Mohan, “Applied resistance for power generation and energy distribution in microbial fuel cells with rationale for maximum power point,” Chem. Eng. J., vol. 335, no. May 2017, pp. 267–274, 2018. [Google Scholar]
  4. M. Helder, “Design criteria for the Plant-Microbial Fuel Cell Electricity generation with living plants – from lab to application,” 2012. [Google Scholar]
  5. R. A. Timmers, D. P. B. T. B. Strik, H. V. M. Hamelers, and C. J. N. Buisman, “Electricity generation by a novel design tubular plant microbial fuel cell,” Biomass and Bioenergy, vol. 51, pp. 60–67, 2013. [CrossRef] [Google Scholar]
  6. R. Nitisoravut and R. Regmi, “Plant microbial fuel cells: A promising biosystems engineering,” Renew. Sustain. Energy Rev., vol. 76, no. March, pp. 81–89, 2017. [CrossRef] [Google Scholar]
  7. K. R. S. Pamintuan, J. A. A. Clomera, K. V. Garcia, G. R. Ravara, and E. J. G. Salamat, “Stacking of aquatic plant-microbial fuel cells growing water spinach (Ipomoea aquatica) and water lettuce (Pistia stratiotes),” IOP Conf. Ser. Earth Environ. Sci., vol. 191, p. 012054, 2018. [CrossRef] [Google Scholar]
  8. L. Zhang, J. Li, X. Zhu, D. ding Ye, Q. Fu, and Q. Liao, “Response of stacked microbial fuel cells with serpentine flow fields to variable operating conditions,” Int. J. Hydrogen Energy, vol. 42, no. 45, pp. 27641–27648, 2017. [Google Scholar]
  9. H. Liu, B. Zhang, Y. Liu, Z. Wang, and L. Hao, “Continuous bioelectricity generation with simultaneous sulfide and organics removals in an anaerobic baffled stacking microbial fuel cell,” Int. J. Hydrogen Energy, vol. 40, no. 25, pp. 8128–8136, 2015. [Google Scholar]
  10. I. A. Ieropoulos, J. Greenman, and C. Melhuish, “Miniature microbial fuel cells and stacks for urine utilisation,” Int. J. Hydrogen Energy, vol. 38, no. 1, pp. 492–496, 2013. [Google Scholar]
  11. Y. Kuzyakov, “Review: Factors affecting rhizosphere priming effects,” J. Plant Nutr. Soil Sci. Fur Pflanzenernahrung Und Bodenkd., vol. 165, no. 4, pp. 382–396, 2002. [Google Scholar]
  12. J. Zhang, J. Li, D. Ye, X. Zhu, Q. Liao, and B. Zhang, “Tubular bamboo charcoal for anode in microbial fuel cells,” J. Power Sources, vol. 272, pp. 277–282, 2014. [Google Scholar]
  13. K. R. S. Pamintuan, I. H. P. Bagumba, and Z. D. G. Domingo, “Compartmentalization studies of a deep- design batch Microbial Fuel Cell assembly,” J. Phys. Conf. Ser., vol. 1457, no. 1, 2020. [Google Scholar]
  14. K. R. S. Pamintuan, C. S. A. Reyes, and D. O. O. Lat, “Compartmentalization and polarization studies of a Plant-Microbial Fuel Cell assembly with Cynodon dactylon,” Int. J. Smart Grid Clean Energy, pp. 720–725, 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.