Open Access
E3S Web Conf.
Volume 181, 2020
2020 5th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2020)
Article Number 03003
Number of page(s) 5
Section Power and Energy Engineering
Published online 24 July 2020
  1. B. Z. Dai, L.; Cui, J.-f.; Hoadley, A.; Zhang, L., Integration of pyrolysis and entrained-bed gasification for the production of chemicals from Victorian brown coal-Process simulation and exergy analysis. Fuel Process.,Technol , pp. 21–31. (2017) [CrossRef] [Google Scholar]
  2. T. S. Hosseini, C.; Haque, N.; Zhang, L., Indirect sequestration: Multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling., Energy Fuels, vol. 28 (10),pp. 6481–6493. (2014) [Google Scholar]
  3. H. Z. Yan, D., Modeling of a low temperature pyrolysis process using ASPEN PLUS., Dev. Chem. Eng. Miner. Process., vol. 7, pp. 577–591. (1999) [CrossRef] [Google Scholar]
  4. Q. F. Yi, J.; Lu, B.; Deng, J.; Yu, C.; Li, W., Energy evaluation for lignite pyrolysis by solid heat carrier coupled with gasification.,Energy Fuels, vol. 27, pp 4523–4533. (2013). [Google Scholar]
  5. L. E. I. Taba, M. F.; Daud, W. A. M. W.; Chakrabarti, M. H., The effect of temperature on various parameters in coal, biomass and CO-gasification: a review., Renewable Sustainable Energy, vol. 16, pp.5584–5596. (2012) [Google Scholar]
  6. C. S. Song, A.; Yoneyama, Y., A new process for catalytic liquefaction of coal using dispersed MoS 2 catalyst generated in situ with added H 2 O., Fuel 2000, vol. 79, pp. 249–261. (2000) [Google Scholar]
  7. W.-C. Wang, Laboratory investigation of drying process of Illinois coals., Powder Technol., vol. 225, pp. 72–85, 2012. (2012) [Google Scholar]
  8. BPPT, Assistance and making a feasibility study on coal up grading technology for the Nagan Raya Powerplant., Final Report. (2019) [Google Scholar]
  9. Ravinder Kumar, Avdhesh Kr. Sharma, P. C. Tewari, “Costanalysis of a coal-fired power plant using the NPV method’, DOI 10.1007/s40092-015-0116-8.(2015) [Google Scholar]
  10. M. Z. Karthikeyan, W.; Mujumdar, A. S., Low-rank coal drying technologies – current status and new developments.,DryingTechnol., vol. 3, pp. 403–415.(2019) [Google Scholar]
  11. E. Z. Binner, L.; Li, C.-Z.; Bhattacharya, S., In-situ observation of the combustion of air-dried and wet Victorian browncoal., Proc. Combust. Inst., vol. 2, pp. 1739–1746. (2011) [Google Scholar]
  12. G. B. Domazetis, P.; James, B. D.; Glaisher, R., Treatments of low rank coals for improved power generation and reduction in Green house gas emissions., Fuel Process. Technol.vol. 3, pp. 249-261 (2008) [Google Scholar]
  13. William G. Sullivan, WicksElin M., Luxhoj James T., Engineering Economy., 3th. Pearson International Edition. (2006) [Google Scholar]
  14. S. V. K. Jangam, M.; Mujumdar, A., “A critical assessment of industrial coal drying technologies: Role of energy, emissions, risk and sustainability.,” DryingTechnol., vol. 4, pp. 395–407. (2011) [Google Scholar]
  15. BPPT, “Technology Selection of Coal Drying Technology for Nagan Raya Power plant,” Final Report. (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.