Open Access
Issue
E3S Web Conf.
Volume 184, 2020
2nd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED 2020)
Article Number 01068
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202018401068
Published online 19 August 2020
  1. CARLOS.V, P. MALYSZ, K. PHILLIP, AND ALI EMADI, “Machine Learning Applied to Electrified Vehicle Battery State of Charge and State Health and Estimation: State-of-the-Art”, vol 8, pp. 52796-52814,16 (Mar 2019) [Google Scholar]
  2. C. Vidal, M. Haußmann, D. Barroso, P.M. Shamsabadi, A. Biswas,E. Chemali, R. Ahmed, and A. Emadi, “Hybrid energy storage system state-of-charge estimation using artificial neural networks for micro-hybrid applications’’ in Proc. IEEE (August 2018). [Google Scholar]
  3. C. Vidal, O. Gross, R. Gu, P. Kollmeyer, and A. Emadi, “xEV Li-ion battery low-temperature effects—Review,’’ IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4560-4572, (May 2019.) [Google Scholar]
  4. J. Yang, C. Du, T. Wang, Y. Gao, X. Cheng, P. Zuo, Y. Ma, J. Wang, G. Yin, J. Xie, and B. Lei, “Rapid prediction of the open-circuit-voltage of lithium ion batteries based on an effective voltage relaxation model, Energies”, vol. 11, no. 12, p. 3444, (2018) [Google Scholar]
  5. C. Chen, R. Xiong, R. Yang, W. Shen, and F. Sun, “State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter,’’ J. Cleaner Prod., vol. 234, no. 5, pp. 1153-1164, (Oct. 2019). [Google Scholar]
  6. W. Wang, Nicholas W. Brady, Chenyao Liao, Youssef A. Fahmy, E. Chemali, Alan C. West, and P. Matthias, “High-Fidelity State-of-Charge Estimation of Li-Ion Batteries using Machine Learning”, vol 1, (Aug 2019). [Google Scholar]
  7. A.A. Hussein, “Capacity fade estimation in electric vehicle li-ion batteries using artificial neural networks,’’ IEEE Trans. Ind. Appl., vol. 51, no. 3,pp. 2321-2330,(May 2015). [Google Scholar]
  8. Hu, Xiaosong & Li, Shengbo & Yang, Yalian. “Advanced Machine Learning Approach for Lithium-Ion Battery State Estimation in Electric Vehicles”. IEEE Transactions on Transportation Electrification, vol 2, (2015). [Google Scholar]
  9. Duo Yanga, Yujie Wanga, Rui Pana, Ruiyang Chenb, Zonghai Chena. “A neural network based state-of-health estimation of lithium-ion battery in electric vehicles” ,The 8th International Conference on Applied Energy – ICAE, vol-105 (2016). [Google Scholar]
  10. H. Lin, T. Liang and S. Chen, “Estimation of Battery State of Health Using a Probabilistic Neural Network,” in IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 679-685, (May 2013). [Google Scholar]
  11. J. Wu, Y. Wang, X. Zhang, and Z. Chen, “A novel state of health estimation method of li-ion battery using group method of data handling,’’ J. Power Sour., vol. 327, pp. 457-464,(Sep. 2016). [Google Scholar]
  12. D. Andre, A. Nuhic, T. Soczka-Guth, and D.U. Sauer, ‘‘Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles,’’ vol-26,(March 2013). [Google Scholar]
  13. Suresh Kumar T, Sankar V, “Reliability improvement of composite electric power system using Unified Power Flow Controller”, 2011 IEEE India Conference, INDICON, (2011). [Google Scholar]
  14. M.S. Hossain Lipu, M.A. Hannan, A. Hussain, M.H. Saad, A. Ayob and M.N. Uddin, “Extreme Learning Machine Model for State-of-Charge Estimation of Lithium-Ion Battery Using Gravitational Search Algorithm,” Vol. 55, no. 4, pp. 4225-4234, (July-Aug. 2019). [Google Scholar]
  15. Haihong Pan, Z. Lü, H. Wang, Haiyan Wei, Lin Chen, “Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine”, Volume 160, (2018). [Google Scholar]
  16. R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training Recurrent Neural Networks’’ in Proc. Int. Conf. Mach. Learn, Atlanta GA, USA, vol-28, pp. 1310-1318, (2013). [Google Scholar]
  17. J. Qu, F. Liu, Y.Ma and J. Fan, “A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery,” in IEEE Access, vol. 7, pp. 87178-87191, (2019). [Google Scholar]
  18. F. Yang, X. Song, F. Xu, and K-L. Tsui, “State-of-charge estimation of lithium-ion batteries via long short-term memory network’’, IEEE Access, vol. 7, pp. 53792-53799, (2019). [Google Scholar]
  19. E. Chemali, P.J. Kollmeyer, M. Preindl, and A. Emadi, “State-of-charge estimation of li-ion batteries using deep neural networks: A machine learning approach’’, vol. 400, pp. 242-255,(Oct. 2018). [Google Scholar]
  20. C. Bian, H. He, and S. Yang, “Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries, Energy” ,vol. 191, Art. no. 116538. (Jan. 2020). [Google Scholar]
  21. X. Tan et al., “Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance,” in IEEE Access, vol. 8, pp. 56811-56822, (2020), doi:10.1109/ACCESS.2020.2979570. [Google Scholar]
  22. Srinivas Rao J., Srinivasa Varma, P., Suresh Kumar. T, “Novel switching design structure for three phase 21-level multilevel inverter fed BLDC drive application”, International Journal of Power Electronics and Drive Systems, Vol. 9, no. 3, pp: 1202-1213, (2018) [Google Scholar]
  23. M.A. Hannan, M.S.H. Lipu, A. Hussain, M.H. Saad, and A. Ayob,’’Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm,’’ IEEE Access, vol. 6, pp. 10069-10079, (2018). [Google Scholar]
  24. A. Eddahech, O. Briat, N. Bertrand, J-Y. Delétage, and J-M. Vinassa,’’Behavior and state-of-health monitoring of li-ion batteries using impedance spectroscopy and recurrent neural networks,’’ Int. J. Electr.Power Energy Syst., vol. 42, no. 1, pp. 487-494, (Nov. 2012). [Google Scholar]
  25. G-W. You, S. Park, and D. Oh, “Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach,” Appl. Energy, vol. 176, pp. 92-103, (Aug. 2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.