Open Access
Issue
E3S Web Conf.
Volume 184, 2020
2nd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED 2020)
Article Number 01069
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202018401069
Published online 19 August 2020
  1. M. Kheshti, X. Kang, Z. Bie, Z. Jiao, and X. Wang, “An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units,” Energy, Vol. 129, pp. 1-15, 2017. [CrossRef] [Google Scholar]
  2. C.L. Chiang, “Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels,” IEEE Trans. Power Syst., Vol. 20, no. 4, pp. 1690-1699, 2005. [Google Scholar]
  3. T. Niknam, H. Doagou, and H. Zeinoddini, “Non-smooth economic dispatch computation by fuzzy and self adaptive particle swarm optimization,” Appl. Soft Comput. J., Vol. 11, no. 2, pp. 2805-2817, 2011. [CrossRef] [Google Scholar]
  4. R. Balamurugan, “Application of shuffled frog leaping algorithm for economic dispatch with multiple fuel options,” Proc. - ICETEEEM 2012, Int. Conf. Emerg. Trends Electr. Eng. Energy Manag., pp. 191-197, 2012. [CrossRef] [Google Scholar]
  5. K. Zare, M.T. Haque, and E. Davoodi, “Solving non-convex economic dispatch problem with valve point effects using modified group search optimizer method,” Electr. Power Syst. Res., Vol. 84, no. 1, pp. 83-89, 2012. [CrossRef] [Google Scholar]
  6. B. Mohammadi-Ivatloo, A. Rabiee, and A. Soroudi, “Nonconvex dynamic economic power dispatch problems solution using hybrid immune-genetic algorithm,” IEEE Syst. J., Vol. 7, no. 4, pp. 777-785, 2013. [Google Scholar]
  7. D.C. Walters and G.B. Sheble, “Genetic algorithm solution of economic dispatch with valve point loading,” IEEE Trans. Power Syst., Vol. 8, no. 3, pp. 1325-1332, 1993. [Google Scholar]
  8. D. Aydin and S. Özyön, “Solution to non-convex economic dispatch problem with valve point effects by incremental artificial bee colony with local search,” Appl. Soft Comput. J., Vol. 13, no. 5, pp. 2456-2466, 2013. [CrossRef] [Google Scholar]
  9. A.A. Al-Subhi and H.K. Alfares, “Economic Load Dispatch Using Linear Programming,” Int. J. Appl. Ind. Eng., Vol. 3, no. 1, pp. 16-36, 2016. [Google Scholar]
  10. A.M. Sasson and G.J. Fisher, “Nonlinear Programming Solutions for Load-Flow, Minimum-Loss, and Economic Dispatching Problems,” IEEE Trans. Power Appar. Syst., vol. PAS-88, no. 4, pp. 399-409, 1969. [CrossRef] [Google Scholar]
  11. G.F. Reid and L. Hasdorff, “Economic dispatch using quadratic programming,” IEEE Trans. Power Appar. Syst., vol. PAS-92, no. 6, pp. 2015-2023, 1973. [CrossRef] [Google Scholar]
  12. Z.X. Liang and J.D. Glover, “A zoom feature for a dynamic programming solution to economic dispatch including transmission losses,” IEEE Trans. Power Syst., Vol. 7, no. 2, pp. 544-550, 1992. [Google Scholar]
  13. G. Irisarri and a C. a Bagchi, “ispatch with Network and Ramping ints via Interior Point Methods l,” Power, Vol. 13, no. 1, pp. 236-242, 1998. [Google Scholar]
  14. M. Azzam, S.E. Selvan, and A. Lef, “Mixed Integer Programming to Globally Minimize the Economic Load Dispatch Problem With Valve-Point Effect11111,” no. i, pp. 1-8, 2015. [Google Scholar]
  15. J.S. Alsumait, M. Qasem, J.K. Sykulski, and A.K. Al-Othman, “An improved Pattern Search based algorithm to solve the Dynamic Economic Dispatch problem with valve-point effect,” Energy Convers. Manag., Vol. 51, no. 10, pp. 2062-2067, 2010. [Google Scholar]
  16. K.S. Hindi and M.R. Ab Ghani, “Dynamic economic dispatch for large scale power systems: a Lagrangian relaxation approach,” Int. J. Electr. Power Energy Syst., Vol. 13, no. 1, pp. 51-56, 1991. [CrossRef] [Google Scholar]
  17. D. Newton-raphson, T. Chen, N. Chen, M. Ieee, and R. Jan, “IEEE Transactions on Energy Conversion, Vol. 10, No. 2, June 1995 293 APPLICATION OF THE FAST NEWTON-RAPHSON ECONOMIC DISPATCH AND REACTIVE POWERNOLTAGE DISPATCH,” Power, Vol. 7, no. 3, pp. 1149-1154, 1992. [Google Scholar]
  18. Z.L. Gaing, “Particle swarm optimization to solving the economic dispatch considering the generator constraints,” IEEE Trans. Power Syst., Vol. 18, no. 3, pp. 1187-1195, 2003. [Google Scholar]
  19. L. Jebaraj, C. Venkatesan, I. Soubache, and C.C.A. Rajan, “Application of differential evolution algorithm in static and dynamic economic or emission dispatch problem: A review,” Renew. Sustain. Energy Rev., Vol. 77, no. April, pp. 1206-1220, 2017. [CrossRef] [Google Scholar]
  20. A. Mahor, V. Prasad, and S. Rangnekar, “Economic dispatch using particle swarm optimization : A review,” vol. 13, pp. 2134-2141, 2009. [Google Scholar]
  21. A.Y. Abdelaziz, E.S. Ali, and S.M. Abd Elazim, “Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems,” Energy, Vol. 101, pp. 506-518, 2016. [CrossRef] [Google Scholar]
  22. M. Mohammadian, A. Lorestani, and M.M. Ardehali, “Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm,” Energy, Vol. 161, pp. 710-724, 2018. [CrossRef] [Google Scholar]
  23. M. Fesanghary and M.M. Ardehali, “A novel meta-heuristic optimization methodology for solving various types of economic dispatch problem,” Energy, Vol. 34, no. 6, pp. 757-766, 2009. [CrossRef] [Google Scholar]
  24. N. Noman and H. Iba, “Differential evolution for economic load dispatch problems,” Electr. Power Syst. Res., Vol. 78, no. 8, pp. 1322-1331, 2008. [CrossRef] [Google Scholar]
  25. A. Bhattacharya and P.K. Chattopadhyay, “Expert Systems with Applications Solving complex economic load dispatch problems using biogeography-based optimization,” Expert Syst. Appl., Vol. 37, no. 5, pp. 3605-3615, 2010. [Google Scholar]
  26. T.A.A. Victoire and A.E. Jeyakumar, “Hybrid PSO–SQP for economic dispatch with valve-point effect,” Electr. Power Syst. Res., Vol. 71, no. 1, pp. 51-59, Sep. 2004. [CrossRef] [Google Scholar]
  27. S. Hemamalini and S.P. Simon, “Dynamic economic dispatch using artificial immune system for units with valve-point effect,” Int. J. Electr. Power Energy Syst., Vol. 33, no. 4, pp. 868-874, 2011. [CrossRef] [Google Scholar]
  28. T.T. Nguyen and D.N. Vo, “The application of one rank cuckoo search algorithm for solving economic load dispatch problems,” Appl. Soft Comput. J., Vol. 37, pp. 763-773, 2015. [CrossRef] [Google Scholar]
  29. A. Kavousi-Fard and A. Khosravi, “An intelligent θ-Modified Bat Algorithm to solve the non-convex economic dispatch problem considering practical constraints,” Int. J. Electr. Power Energy Syst., Vol. 82, pp. 189-196, 2016. [CrossRef] [Google Scholar]
  30. X. Yang, S. Soheil, S. Hosseini, and A. Hossein, “Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect,” Appl. Soft Comput. J., Vol. 12, no. 3, pp. 1180-1186, 2012. [CrossRef] [Google Scholar]
  31. K. Bhattacharjee, A. Bhattacharya, and S.H.N. Dey, “Chemical reaction optimisation for different economic dispatch problems,” IET Gener. Transm. Distrib., Vol. 8, no. 3, pp. 530-541, 2014. [CrossRef] [Google Scholar]
  32. M. Pradhan, P.K. Roy, and T. Pal, “Oppositional based grey wolf optimization algorithm for economic dispatch problem of power system,” Ain Shams Eng. J., Vol. 9, no. 4, pp. 2015-2025, 2018. [CrossRef] [Google Scholar]
  33. V.S. Aragón, S.C. Esquivel, and C.A. Coello Coello, “An immune algorithm with power redistribution for solving economic dispatch problems,” Inf. Sci. (Ny)., Vol. 295, pp. 609-632, Feb. 2015. [Google Scholar]
  34. Srinivas Rao J., Srinivasa Varma, P., Suresh Kumar. T, International Journal of Power Electronics and Drive Systems, vol. 9, no.3, pp. 1202-1213, 2018. [Google Scholar]
  35. R. Ghanizadeh, S. Majid, and H. Farshi, “Teaching – learning-based optimization for economic load dispatch,” 2019 5th Conf. Knowl. Based Eng. Innov., pp. 851-856, 2019. [CrossRef] [Google Scholar]
  36. R.K. Swain, N.C. Sahu, and P.K. Hota, “Gravitational Search Algorithm for Optimal Economic Dispatch,” vol. 6, pp. 411-419, 2012. [Google Scholar]
  37. L. Calvet, J. De Armas, D. Masip, and A.A. Juan, “Learnheuristics: Hybridizing metaheuristics with machine learning for optimization with dynamic inputs,” Open Math., Vol. 15, no. 1, pp. 261-280, 2017. [CrossRef] [Google Scholar]
  38. A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, “Harris hawks optimization: Algorithm and applications,” Futur. Gener. Comput. Syst., Vol. 97, pp. 849-872, 2019. [CrossRef] [Google Scholar]
  39. B. Doʇan and T. Ölmez, “A new metaheuristic for numerical function optimization: Vortex Search algorithm,” Inf. Sci. (Ny)., Vol. 293, no. August, pp. 125-145, 2015. [Google Scholar]
  40. P. Hansen, N. Mladenović, and J.A. Moreno Pérez, “Variable neighbourhood search: Methods and applications,” Ann. Oper. Res., Vol. 175, no. 1, pp. 367-407, 2010. [Google Scholar]
  41. S. Kirkpatrick, “Optimization by Simulated Annealing Optimization by Simulated Annealing,” vol. 220, no. January 1983, 2014. [Google Scholar]
  42. B. Naama, H. Bouzeboudja, and A. Allali, “Solving the economic dispatch problem by using Tabu Search algorithm,” Energy Procedia, Vol. 36, pp. 694-701, 2013. [Google Scholar]
  43. T. Yalcinoz, H. Altun, and M. Uzam, “Economic dispatch solution using a genetic algorithm based on arithmetic crossover,” 2001 IEEE Porto Power Tech Proc., Vol. 2, no. 4, pp. 153-156, 2001. [Google Scholar]
  44. A.F. Nematollahi, A. Rahiminejad, and B. Vahidi, “A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization,” Appl. Soft Comput. J., Vol. 59, pp. 596-621, 2017. [CrossRef] [Google Scholar]
  45. D. Whitley, “An overview of evolutionary algorithms: Practical issues and common pitfalls,” Inf. Softw. Technol., Vol. 43, no. 14, pp. 817-831, 2001. [Google Scholar]
  46. A. Biswas, K.K. Mishra, S. Tiwari, and A.K. Misra, “Physics-Inspired Optimization Algorithms: A Survey,” J. Optim., Vol. 2013, pp. 1-16, 2013. [Google Scholar]
  47. E. Atashpaz-Gargari and C. Lucas, Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. 2007. [Google Scholar]
  48. R.V. Rao, V.J. Savsani, and D.P. Vakharia, “Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems,” Inf. Sci. (Ny)., Vol. 183, no. 1, pp. 1-15, 2012. [Google Scholar]
  49. M. Kumar, A.J. Kulkarni, and S.C. Satapathy, “Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology,” Futur. Gener. Comput. Syst., Vol. 81, pp. 252-272, 2018. [CrossRef] [Google Scholar]
  50. J.A. Ruiz-vanoye, O. Díaz-parra, F. Cocón, and A. Soto, “Meta-Heuristics Algorithms based on the Grouping of Animals by Social Behavior for the Traveling Salesman Problem,” Int. J. Comb. Optim. Probl. Informatics, 2012. [Google Scholar]
  51. J. Xu and J. Zhang, “Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis,” Proc. 33rd Chinese Control Conf. CCC 2014, pp. 8633-8638, 2014. [CrossRef] [Google Scholar]
  52. X.S. Yang, S. Deb, and S. Fong, “Metaheuristic algorithms: Optimal balance of intensification and diversification,” Appl. Math. Inf. Sci., Vol. 8, no. 3, pp. 977-983, 2014. [CrossRef] [Google Scholar]
  53. I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” Inf. Sci. (Ny)., Vol. 237, no. February, pp. 82-117, 2013. [Google Scholar]
  54. T. Nadeem Malik, A. ul Asar, M.F. Wyne, and S. Akhtar, “A new hybrid approach for the solution of nonconvex economic dispatch problem with valve-point effects,” Electr. Power Syst. Res., Vol. 80, no. 9, pp. 1128-1136, Sep. 2010. [CrossRef] [Google Scholar]
  55. C. Yaşar and S. Özyön, “A new hybrid approach for nonconvex economic dispatch problem with valve-point effect,” Energy, Vol. 36, no. 10, pp. 5838-5845, Oct. 2011. [CrossRef] [Google Scholar]
  56. N. Sinha, R. Chakrabarti, and P.K. Chattopadhyay, “Evolutionary programming techniques for economic load dispatch,” IEEE Trans. Evol. Comput., Vol. 7, no. 1, pp. 83-94, 2003. [Google Scholar]
  57. R. Kumar, D. Sharma, and A. Sadu, “Electrical Power and Energy Systems A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch,” Int. J. Electr. Power Energy Syst., Vol. 33, no. 1, pp. 115-123, 2011. [CrossRef] [Google Scholar]
  58. J.S. Al-Sumait, J.K. Sykulski, and A.K. Al-Othman, “Solution of different types of economic load dispatch problems using a pattern search method,” Electr. Power Components Syst., Vol. 36, no. 3, pp. 250-265, 2008. [CrossRef] [Google Scholar]
  59. Bankupalli, P.T., Srikanth Babu, V., Suresh Kumar. T, “Modelling of static VAR compensator employing a cascaded H-bridged multilevel converter” International Journal of Applied Engineering Research, vol. 10, no. 16, pp. 37057-37062, 2015 [Google Scholar]
  60. K. Meng, H.G. Wang, Z.Y. Dong, and K.P. Wong, “Quantum-inspired particle swarm optimization for valve-point economic load dispatch,” IEEE Trans. Power Syst., Vol. 25, no. 1, pp. 215-222, 2010. [Google Scholar]
  61. M.S.P. Subathra, S. Easter Selvan, T. Aruldoss Albert Victoire, A. Hepzibah Christinal, and U. Amato, “A hybrid with cross-entropy method and sequential quadratic programming to solve economic load dispatch problem,” IEEE Syst. J., Vol. 9, no. 3, pp. 1031-1044, 2015. [Google Scholar]
  62. S. Banerjee, D. Maity, and C.K. Chanda, “Teaching learning based optimization for economic load dispatch problem considering valve point loading effect,” Int. J. Electr. Power Energy Syst., Vol. 73, pp. 456-464, Dec. 2015. [CrossRef] [Google Scholar]
  63. M.N. Abdullah, A.H.A. Bakar, N.A. Rahim, J.J. Jamian, and M.M. Aman, “Economic dispatch with valve point effect using iteration particle swarm optimization,” Proc. Univ. Power Eng. Conf., no. 1, pp. 1-6, 2012. [Google Scholar]
  64. S. Hemamalini and S.P. Simon, “Maclaurin series-based Lagrangian method for economic dispatch with valve-point effect,” IET Gener. Transm. Distrib., Vol. 3, no. 9, pp. 859-871, 2009. [CrossRef] [Google Scholar]
  65. M. Modiri-Delshad, S.H. Aghay Kaboli, E. Taslimi-Renani, and N.A. Rahim, “Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options,” Energy, Vol. 116, pp. 637-649, Dec. 2016. [CrossRef] [Google Scholar]
  66. M. Modiri-Delshad and N.A. Rahim, “Solving non-convex economic dispatch problem via backtracking search algorithm,” Energy, Vol. 77, pp. 372-381, Dec. 2014. [CrossRef] [Google Scholar]
  67. V. Hosseinnezhad, M. Rafiee, M. Ahmadian, and M.T. Ameli, “Species-based Quantum Particle Swarm Optimization for economic load dispatch,” Int. J. Electr. Power Energy Syst., Vol. 63, pp. 311-322, Dec. 2014. [CrossRef] [Google Scholar]
  68. T. Niknam, H.D. Mojarrad, H.Z. Meymand, and B.B. Firouzi, “A new honey bee mating optimization algorithm for non-smooth economic dispatch,” Energy, Vol. 36, no. 2, pp. 896-908, Feb. 2011. [CrossRef] [Google Scholar]
  69. P.K. Roy, S. Bhui, and C. Paul, “Solution of economic load dispatch using hybrid chemical reaction optimization approach,” Appl. Soft Comput., Vol. 24, pp. 109-125, Nov. 2014. [Google Scholar]
  70. D. He, F. Wang, and Z. Mao, “Hybrid genetic algorithm for economic dispatch with valve-point effect,” Electr. Power Syst. Res., Vol. 78, no. 4, pp. 626-633, Apr. 2008. [CrossRef] [Google Scholar]
  71. A. Bhattacharya and P.K. Chattopadhyay, “Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch,” IEEE Trans. Power Syst., Vol. 25, no. 4, pp. 1955-1964, 2010. [Google Scholar]
  72. V. Hosseinnezhad and E. Babaei, “Economic load dispatch using θ-PSO,” Int. J. Electr. Power Energy Syst., Vol. 49, pp. 160-169, Jul. 2013. [CrossRef] [Google Scholar]
  73. J.G. Vlachogiannis and K.Y. Lee, “Closure to discussion on ‘economic load dispatch - A comparative study on heuristic optimization techniques with an improved coordinated aggregation-based PSO,’” IEEE Trans. Power Syst., Vol. 25, no. 1, pp. 591-592, 2010. [Google Scholar]
  74. M. Basu and A. Chowdhury, “Cuckoo search algorithm for economic dispatch,” Energy, Vol. 60, pp. 99-108, Oct. 2013. [CrossRef] [Google Scholar]
  75. A.I. Selvakumar and K. Thanushkodi, “Optimization using civilized swarm: Solution to economic dispatch with multiple minima,” Electr. Power Syst. Res., Vol. 79, no. 1, pp. 8-16, Jan. 2009. [CrossRef] [Google Scholar]
  76. P. Subbaraj, R. Rengaraj, and S. Salivahanan, “Enhancement of Self-adaptive real-coded genetic algorithm using Taguchi method for Economic dispatch problem,” Appl. Soft Comput., Vol. 11, no. 1, pp. 83-92, Jan. 2011. [Google Scholar]
  77. X. He, Y. Rao, and J. Huang, “A novel algorithm for economic load dispatch of power systems,” Neurocomputing, Vol. 171, pp. 1454-1461, Jan. 2016. [Google Scholar]
  78. L. dos Santos Coelho and V.C. Mariani, “Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect,” IEEE Trans. Power Syst., Vol. 21, no. 2, pp. 989-996, 2006. [Google Scholar]
  79. G. Binetti, A. Davoudi, D. Naso, B. Turchiano, and F.L. Lewis, “A distributed auction-based algorithm for the nonconvex economic dispatch problem,” IEEE Trans. Ind. Informatics, Vol. 10, no. 2, pp. 1124-1132, 2014. [CrossRef] [Google Scholar]
  80. J.B. Park, K.S. Lee, J.R. Shin, and K.Y. Lee, “A particle swarm optimization for economic dispatch with nonsmooth cost functions,” IEEE Trans. Power Syst., Vol. 20, no. 1, pp. 34-42, 2005. [Google Scholar]
  81. D. Liu and Y. Cai, “Taguchi method for solving the economic dispatch problem with nonsmooth cost functions,” IEEE Trans. Power Syst., Vol. 20, no. 4, pp. 2006-2014, 2005. [Google Scholar]
  82. S. Pothiya, I. Ngamroo, and W. Kongprawechnon, “Ant colony optimisation for economic dispatch problem with non-smooth cost functions,” Int. J. Electr. Power Energy Syst., Vol. 32, no. 5, pp. 478-487, 2010. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.