Open Access
E3S Web Conf.
Volume 184, 2020
2nd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED 2020)
Article Number 01090
Number of page(s) 6
Published online 19 August 2020
  1. Davidovits J., Global warming impact on the cement and aggregates industries, World resource review, 6(2), 263-278 (1994). [Google Scholar]
  2. Krishna D. A, Priyadarsini R. S & Narayanan S., Effect of Elevated Temperatures on the Mechanical Properties of Concrete, Procedia Structural Integrity, 14, 384-394 (2019). [CrossRef] [Google Scholar]
  3. Rao G. M, Rao T. G, Reddy M.S. N & Seshu D.R., A Study on the Strength and Performance of Geopolymer Concrete Subjected to Elevated Temperatures, Recent Advances in Structural Engineering, Volume 1 (pp. 869-889), Springer, Singapore (2019). [Google Scholar]
  4. Siddique R & Kaur D., Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures, Journal of Advanced Research, 3(1), 45-51(2012). [Google Scholar]
  5. Davidovits J., Geopolymers and geopolymeric materials, Journal of Thermal Analysis and Calorimetry, 35(2), 429-441 (1989). [CrossRef] [EDP Sciences] [Google Scholar]
  6. Davidovits J., Geopolymers: inorganic polymeric new materials, Journal of Thermal Analysis and calorimetry, 37(8), 1633-1656 (1991). [Google Scholar]
  7. Shaikh F.U. A, & Vimonsatit V., Compressive strength of fly‐ash‐based geopolymer concrete at elevated temperatures, Fire and materials, 39(2), 174-188 (2015). [CrossRef] [Google Scholar]
  8. Lăzărescu A. V, Szilagyi H, Baeră C, & Ioani A., The effect of alkaline activator ratio on the compressive strength of fly ash-based geopolymer paste, In IOP Conference Series: Materials Science and Engineering (vol. 209, No. 1, p. 012064). IOP Publishing (June,2017). [Google Scholar]
  9. Duxson P, Provis J. L, Lukey G. C, & Van Deventer J.S., The role of inorganic polymer technology in the development of ‘green concrete’, Cement and Concrete Research, 37(12), 1590-1597 (2007). [Google Scholar]
  10. Davidovits J., Properties of geopolymer cements, In First international conference on alkaline cements and concretes (vol. 1, pp. 131-149), Kiev State Technical University, Ukraine: Scientific Research Institute on Binders and Materials (October,1994). [Google Scholar]
  11. Shetty M.S., Concrete technology. S. chand & company LTD, (2005). [Google Scholar]
  12. Neville A.M., Properties of concrete (Vol. 4). London: Longman (1995). [Google Scholar]
  13. Komnitsas K, & Zaharaki D., Geopolymerisation: A review and prospects for the minerals industry, Minerals engineering, 20(14), 1261-1277 (2007). [Google Scholar]
  14. Kodur V., Properties of concrete at elevated temperatures, ISRN Civil engineering (2014). [Google Scholar]
  15. A. Ehsani, M. Nili, K. Shaabani., Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing Fly Ash, KSCE J. Civ. Eng. 21 (5), 1854-1865 (2017). [Google Scholar]
  16. H. Chao-Lung, B. Le Anh-Tuan, C. Chun-Tsun, Effect of rice husk ash on the strength and durability characteristics of concrete, Constr. Build. Mater. 25 (9), 3768-3772 (2011). [Google Scholar]
  17. A. Mehta, R. Siddique, Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash, Constr. Build. Mater. 150, 792-807 (2017). [Google Scholar]
  18. T. Yang, X. Yao, Z. Zhang, H. Wang, Mechanical property and structure of alkali-activated fly ash and slag blends, J. Sustain. Cement-Based Mater. 1 (4), 167-178 (2012). [Google Scholar]
  19. P. Nuaklong, V. Sata, P. Chindaprasirt, Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens, Constr. Build. Mater. 161, 365-373 (2018). [Google Scholar]
  20. B.B. Jindal, D. Singhal, S.K. Sharma, D.K. Ashish, Parveen, Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine, Advances In Concrete, Construction 5 (1), 17-29 (2017). [Google Scholar]
  21. Phoo-Ngernkham T, Phiangphimai C, Damrongwiriyanupap N, Hanjitsuwan S, Thumrongvut J & Chindaprasirt P., A mix design procedure for alkali-activated high-calcium fly ash concrete cured at ambient temperature, Advances in Materials Science and Engineering, (2018). [Google Scholar]
  22. Naspuri Arun Raju, T. Suresh Kumar, International Journal of Innovative Technology and Exploring Engineering, Vol. 8 no. 11, pp: 3860-3864, (2019). [Google Scholar]
  23. Joshi S. V & Kadu M.S., Role of alkaline activator in development of eco-friendly fly ash based geo polymer concrete, International Journal of Environmental Science and Development, 3(5), 417 (2012). [Google Scholar]
  24. Palomo A & Fernández-Jiménez A., Alkaline activation, procedure for transforming fly ash into new materials. Part I: Applications, World of Coal Ash (WOCA) Conference (pp. 1-14) (May, 2011). [Google Scholar]
  25. Jindal B.B., Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review, Construction and Building Materials, 227, 116644 (2019). [CrossRef] [Google Scholar]
  26. Khan M. S, Shariq M, Akhtar S & Masood A., Performance of high-volume fly ash concrete after exposure to elevated temperature, Journal of the Australian Ceramic Society, 1-14 (2019). [Google Scholar]
  27. Jia Z, Chen C, Shi J, Zhang Y, Sun Z & Zhang P., The microstructural change of CSH at elevated temperature in Portland cement/GGBFS blended system. Cement and Concrete Research, 123, 105773 (2019). [CrossRef] [Google Scholar]
  28. Pan Z, Sanjayan J. G & Kong D.L., Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures. Construction and Building Materials, 36, 365-372 (2012). [CrossRef] [Google Scholar]
  29. Nadeem A, Memon S. A & Lo T.Y., The performance of fly ash and metakaolin concrete at elevated temperatures, Construction and Building Materials, 62, 67-76 (2014). [CrossRef] [Google Scholar]
  30. Tummala Suresh Kumar, Kosaraju Satyanarayana, Materials Today: Proceeding, 26 (2), 3228-3233, (2020) [CrossRef] [Google Scholar]
  31. Thomas C, Rico J, Tamayo P, Ballester F, Setién J & Polanco J.A., Effect of elevated temperature on the mechanical properties and microstructure of heavyweight magnetite concrete with steel fibres, Cement and Concrete Composites, 103, 80-88 (2019). [CrossRef] [Google Scholar]
  32. Ahmad S, Umar A, Masood A & Nayeem M., Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume, Advances in concrete construction, 7(1), 31 (2019). [Google Scholar]
  33. Lee W. Y, Husin S. S, Thangaveloo T & Hejazi F., Forensic engineering of fire damaged concrete structures-a review-. In IOP Conference Series: Earth and Environmental Science (vol. 357, No. 1, p. 012021). IOP Publishing (November, 2019). [Google Scholar]
  34. Khalaf J & Huang Z., The bond behaviour of reinforced concrete members at elevated temperatures, Fire Safety Journal, 103, 19-33 (2019). [Google Scholar]
  35. Sharma A, Bošnjak J & Bessert S., Experimental investigations on residual bond performance in concrete subjected to elevated temperature, Engineering Structures, 187, 384-395 (2019). [CrossRef] [Google Scholar]
  36. Junaid M. T, Kayali O & Khennane A., Response of alkali activated low calcium fly-ash based geopolymer concrete under compressive load at elevated temperatures, Materials and Structures, 50(1), 50 (2017). [Google Scholar]
  37. Hussin M. W, Bhutta M.A. R, Azreen M, Ramadhansyah P. J & Mirza J., Performance of blended ash geopolymer concrete at elevated temperatures, Materials and Structures, 48(3), 709-720 (2015). [CrossRef] [Google Scholar]
  38. Mallikarjuna Rao G & Gunneswara Rao T. D, A quantitative method of approach in designing the mix proportions of fly ash and GGBS-based geopolymer concrete, Australian Journal of Civil Engineering, 16(1), 53-63 (2018). [Google Scholar]
  39. Rajagiri A, MN Sandhya, Nawaz S, Suresh Kumar T, E3S Web of Conferences 87 01004 (2019). [CrossRef] [EDP Sciences] [Google Scholar]
  40. Hardjito D, Wallah, S. E, Sumajouw D.M. J, & Rangan B.V., Introducing fly ash-based geopolymer concrete: manufacture and engineering properties, 30th conference on our world in concrete & structures (vol. 24) (August, 2005). [Google Scholar]
  41. Kong D L & Sanjayan J G., Effect of elevated temperatures on geopolymer paste, mortar and concrete, Cement and concrete research, 40(2), 334-339 (2010). [CrossRef] [Google Scholar]
  42. Mane S & Jadhav H.S., Investigation of geopolymer mortar and concrete under high temperature. Magnesium, 1(5) (2012). [Google Scholar]
  43. Shaikh F.U. A & Vimonsatit V., Compressive strength of fly‐ash‐based geopolymer concrete at elevated temperatures, Fire and materials, 39(2), 174-188 (2015). [Google Scholar]
  44. Aslani F., Thermal performance modeling of geopolymer concrete, Journal of Materials in Civil Engineering, 28(1), 04015062 (2016). [Google Scholar]
  45. Li L, Shi L, Wang Q, Liu Y, Dong J, Zhang H & Zhang, G., A review on the recovery of fire-damaged concrete with post-fire-curing. Construction and Building Materials, 237, 117564 (2020). [CrossRef] [Google Scholar]
  46. Poon C. S, Azhar S, Anson M & Wong Y.L., Strength and durability recovery of fire-damaged concrete after post-fire-curing, Cement and concrete research, 31(9), 1307-1318(2001). [Google Scholar]
  47. Junru R, Huiguo C, Ruixi D & Tao S., Behavior of combined fly ash/GBFS-based geopolymer concrete after exposed to elevated temperature, IOP Conference Series: Earth and Environmental Science (vol. 267, No. 3, p. 032056). IOP Publishing (May, 2019). [Google Scholar]
  48. Lee W. Y, Husin S. S, Thangaveloo T & Hejazi F., Forensic engineering of fire damaged concrete structures: a review, In IOP Conference Series: Earth and Environmental Science (vol. 357, No. 1, p. 012021). IOP Publishing (November, 2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.