Open Access
Issue
E3S Web Conf.
Volume 184, 2020
2nd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED 2020)
Article Number 01091
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202018401091
Published online 19 August 2020
  1. Patankar S.V., Ghugal Y.M., & Jamkar S.S. (2015). Mix design of fly ash based geopolymer concrete. In Advances in Structural Engineering (pp. 1619-1634). Springer, New Delhi. [CrossRef] [Google Scholar]
  2. Davidovits, J. (1984). U.S. Patent No. 4,472,199. Washington, DC: U.S. Patent and Trademark Office. [Google Scholar]
  3. Joseph, D. (1994). Global warming impact on the cement and aggregate industries. Geopolymer Institute Saint-Quention, France. World Resour. Rev, 6, 263-278. [Google Scholar]
  4. J. Davidovits, High-alkali cements for 21st century concretes, Special Publication 144 (1994) 383-398. [Google Scholar]
  5. Junaid M.T., Kayali, O., Khennane, A., & Black, J. (2015). A mix design procedure for low calcium alkali activated fly ash-based concretes. Construction and Building Materials, 79, 301-310. [Google Scholar]
  6. Bondar, D., Lynsdale C.J., Milestone N.B., Hassani, N., & Ramezanianpour A.A. (2011). Effect of adding mineral additives to alkali-activated natural pozzolan paste. Construction and Building Materials, 25 (6), 2906-2910. [Google Scholar]
  7. Jindal B.B. (2019). Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Construction and Building Materials, 227, 116644. [Google Scholar]
  8. Mallikarjuna Rao, G., & Gunneswara Rao T.D. (2018). A quantitative method of approach in designing the mix proportions of fly ash and GGBS-based geopolymer concrete. Australian Journal of Civil Engineering, 16 (1), 53-63. [Google Scholar]
  9. Siegel J.A., Mirakovits J.A., & Hudson, B. (2013). Concrete mix design, quality control and specification. CRC Press. [Google Scholar]
  10. Habert, G., De Lacaillerie J.D.E., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Journal of cleaner production, 19 (11), 1229-1238. [Google Scholar]
  11. Rangan B.V., Hardjito, D., Wallah S.E., & Sumajouw D.M. (2005, June). Studies on fly ash-based geopolymer concrete. In Proceedings of the World Congress Geopolymer, Saint Quentin, France (Vol. 28, pp. 133-137). [Google Scholar]
  12. Hardjito, D., Wallah S.E., Sumajouw, D. M, & Rangan B.V. (2004). On the development of fly ash-based geopolymer concrete. Materials Journal, 101(6), 467-472. [Google Scholar]
  13. Huiskes D.M.A., Keulen, A, Yu Q.L., & Brouwers H.J.H. Design and performance evaluation of ultra-lightweight alkali activated concrete. PERFORMANCE OF ADMIXTURE AND SECONDARY MINERALS IN ALKALI ACTIVATED CONCRETE, 85. [Google Scholar]
  14. Hadi M.N., Zhang, H., & Parkinson, S. (2019). Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability. Journal of Building Engineering, 23, 301-313. [CrossRef] [Google Scholar]
  15. Ayub, T., Khan S.U., & Memon F.A. (2014). Mechanical characteristics of hardened concrete with different mineral admixtures: a review. The Scientific World Journal, 2014. [Google Scholar]
  16. BIS (Bureau of Indian Standards) 2019. IS 10262-2019: Indian standard concrete mix proportioning-guidelines (second revision). New Delhi: Bureau of Indian Standards. [Google Scholar]
  17. Anchula Nagarjuna, T. Suresh Kumar, B.Yogeswara Reddy, M. Udaykiran, International Journal of Innovative Technology and Exploring Engineering, Vol. 8 no. 11, pp: 640-645, (2019) [Google Scholar]
  18. Manjunatha G.S., Radhakrishna, Venugopal, K, & Maruthi, S. V (2014). Strength characteristics of open air cured geopolymer concrete. Transactions of the indian ceramic society, 73(2), 149-156. [CrossRef] [Google Scholar]
  19. Ariffin, M, Azreen, M, Hussin M.W., & RafiqueBhutta M.A. (2011). Mix design and compressive strength of geopolymer concrete containing blended ash from agro-industrial wastes. In Advanced Materials Research (Vol. 339, pp. 452-457). Trans Tech Publications Ltd. [Google Scholar]
  20. Nath, S. K, Mukherjee, S., Maitra, S., & Kumar, S. (2014). Ambient and elevated temperature geopolymerizationbehaviour of class f fly ash. Transactions of the Indian Ceramic Society, 73(2), 126-132. [CrossRef] [Google Scholar]
  21. Ng T.S., & Foster S.J. (2013). Development of a mix design methodology for high‐performance geopolymer mortars. Structural Concrete, 14(2), 148-156. [CrossRef] [Google Scholar]
  22. Ryu, G S., Lee Y.B., Koh K.T., & Chung Y.S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409-418. [Google Scholar]
  23. Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya S.K. (2015). Geopolymer concrete: A review of some recent developments. Construction and building materials, 85, 78-90. [Google Scholar]
  24. Naspuri Arun Raju, T. Suresh Kumar, International Journal of Innovative Technology and Exploring Engineering, Vol. 8 no. 11, pp: 3860-3864, (2019). [Google Scholar]
  25. Rao G.M., & Rao T.G. (2015). Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arabian Journal for Science and Engineering, 40 (11), 3067-3074. [Google Scholar]
  26. Goriparthi M.R., & TD G.R. (2017). Effect of fly ash and GGBS combination on mechanical and durability properties of GPC. Advances in concrete construction, 5 (4), 313. [Google Scholar]
  27. Al Bakria A.M., Kamarudin, H., BinHussain, M., Nizar I.K., Zarina, Y., & Rafiza A.R. (2011). The effect of curing temperature on physical and chemical properties of geopolymers. Physics Procedia, 22, 286-291. [Google Scholar]
  28. Duxson, P., Provis J.L., Lukey G.C., & Van Deventer J.S. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37 (12), 1590-1597. [Google Scholar]
  29. Patankar S.V., Ghugal Y.M., & Jamkar S.S. (2014). Effect of concentration of sodium hydroxide and degree of heat curing on fly ash-based geopolymer mortar. Indian Journal of Materials Science, 2014. [Google Scholar]
  30. Tummala Suresh Kumar, Kosaraju Satyanarayana, Materials Today: Proceeding, 26 (2), 3228-3233, (2020). [CrossRef] [Google Scholar]
  31. Nath, P., & Sarker P.K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171. [Google Scholar]
  32. Saxena S.K., Kumar, M., & Singh N.B. (2018). Effect of Alccofine powder on the properties of Pond fly ash based Geopolymermortar under different conditions. Environmental Technology & Innovation, 9, 232-242. [Google Scholar]
  33. Van Jaarsveld J.G.S., Van Deventer J.S.J., & Lukey G.C. (2003). The characterisation of source materials in fly ash-based geopolymers. Materials Letters, 57 (7), 1272-1280. [Google Scholar]
  34. A. Mehta, R. Siddique, Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash, Constr. Build. Mater. 150, 792-807 (2017). [Google Scholar]
  35. Deb P.S., Nath, P., & Sarker P.K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials & Design (1980-2015), 62, 32-39. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.