Open Access
Issue |
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
|
|
---|---|---|
Article Number | 04018 | |
Number of page(s) | 5 | |
Section | Chemical Engineering and Food Biotechnology | |
DOI | https://doi.org/10.1051/e3sconf/202018504018 | |
Published online | 01 September 2020 |
- Miller, J. C.; Tan, S.; Qiao, G.; Barlow, K. A.; Wang, J.; Xia, D. F.; Meng, X.; Paschon, D. E.; Leung, E.; Hinkley, S. J.; Dulay, G. P.; Hua, K. L.; Ankoudinova, I.; Cost, G. J.; Urnov, F. D.; Zhang, H. S.; Holmes, M. C.; Zhang, L.; Gregory, P. D.; Rebar, E. J., A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011, 29(2), 143–8. [CrossRef] [PubMed] [Google Scholar]
- Straimer, J.; Lee, M. C.; Lee, A. H.; Zeitler, B.; Williams, A. E.; Pearl, J. R.; Zhang, L.; Rebar, E. J.; Gregory, P. D.; Llinas, M.; Urnov, F. D.; Fidock, D. A., Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases. Nat Methods 2012, 9 (10), 993–8. [CrossRef] [PubMed] [Google Scholar]
- Urnov, F. D.; Rebar, E. J.; Holmes, M. C.; Zhang, H. S.; Gregory, P. D., Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010, 11 (9), 636–46. [CrossRef] [PubMed] [Google Scholar]
- Zhang, H.; Zhang, J.; Wei, P.; Zhang, B.; Gou, F.; Feng, Z.; Mao, Y.; Yang, L.; Zhang, H.; Xu, N.; Zhu, J. K., The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 2014, 12 (6), 797–807. [CrossRef] [PubMed] [Google Scholar]
- Chen, C.; Fenk, L. A.; de Bono, M., Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acids Res 2013, 41 (20), e193. [CrossRef] [PubMed] [Google Scholar]
- Bae, T.; Kim, H.; Kim, J. H.; Kim, Y. J.; Lee, S. H.; Ham, B. J.; Hur, J. K., Specificity Assessment of CRISPR Genome Editing of Oncogenic EGFR Point Mutation with Single-Base Differences. Molecules 2019, 25 (1). [Google Scholar]
- Banakar, R.; Eggenberger, A. L.; Lee, K.; Wright, D.A.; Murugan, K.; Zarecor, S.; Lawrence-Dill, C. J.; Sashital, D. G.; Wang, K., High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice. Sci Rep 2019, 9 (1), 19902. [CrossRef] [PubMed] [Google Scholar]
- Barrangou, R., Foresight is 2020: Ten Bold Predictions for the New CRISPR Year. CRISPR J 2019, 2 (6), 341–342. [PubMed] [Google Scholar]
- Becu-Villalobos, D., [CRISPR-CAS9 in medicine, the saga continues]. Medicina (B Aires) 2019, 79 (6), 522–523. [PubMed] [Google Scholar]
- Crowley, V. M.; Catching, A.; Taylor, H. N.; Borges, A. L.; Metcalf, J.; Bondy-Denomy, J.; Jackson, R. N., A Type IV-A CRISPR-Cas System in Pseudomonas aeruginosa Mediates RNA-Guided Plasmid Interference In Vivo. CRISPR J 2019, 2 (6), 434–440. [PubMed] [Google Scholar]
- Cui, X.; Balcerzak, M.; Schernthaner, J.; Babic, V.; Datla, R.; Brauer, E. K.; Labbe, N.; Subramaniam, R.; Ouellet, T., Correction to: An optimised CRISPR/Cas9 protocol to create targeted mutations in homoeologous genes and an efficient genotyping protocol to identify edited events in wheat. Plant Methods 2019, 15, 163. [CrossRef] [PubMed] [Google Scholar]
- de Maat, V.; Stege, P. B.; Dedden, M.; Hamer, M.; van Pijkeren, J. P.; Willems, R. J. L.; van Schaik, W., CRISPR-Cas9-mediated genome editing in vancomycin-resistant Enterococcus faecium. FEMS Microbiol Lett 2019, 366 (22). [Google Scholar]
- Decker, C. E.; Young, T.; Pasnikowski, E.; Chiu, J.; Song, H.; Wei, Y.; Thurston, G.; Daly, C., Genome- scale CRISPR activation screen uncovers tumor- intrinsic modulators of CD3 bispecific antibody efficacy. Sci Rep 2019, 9 (1), 20068. [CrossRef] [PubMed] [Google Scholar]
- Dempster, J. M.; Pacini, C.; Pantel, S.; Behan, F. M.; Green, T.; Krill-Burger, J.; Beaver, C. M.; Younger, S. T.; Zhivich, V.; Najgebauer, H.; Allen, F.; Goncalves, E.; Shepherd, R.; Doench, J. G.; Yusa, K.; Vazquez, F.; Parts, L.; Boehm, J. S.; Golub, T. R.; Hahn, W. C.; Root, D. E.; Garnett, M. J.; Tsherniak, A.; Iorio, F., Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Nat Commun 2019, 10 (1), 5817. [CrossRef] [PubMed] [Google Scholar]
- Jackow, J.; Guo, Z.; Hansen, C.; Abaci, H. E.; Doucet, Y. S.; Shin, J. U.; Hayashi, R.; DeLorenzo, D.; Kabata, Y.; Shinkuma, S.; Salas-Alanis, J. C.; Christiano, A. M., CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proc Natl Acad Sci U S A 2019. [Google Scholar]
- Jeon, J.; Park, J. S.; Min, B.; Chung, S. K.; Kim, M. K.; Kang, Y. K., Retroelement Insertion in a CRISPR/Cas9 Editing Site in the Early Embryo Intensifies Genetic Mosaicism. Front Cell Dev Biol 2019, 7, 273. [CrossRef] [PubMed] [Google Scholar]
- Jeong, K.; Munoz-Bodnar, A.; Arias Rojas, N.; Poulin, L.; Rodriguez, R. L.; Gagnevin, L.; Verniere, C.; Pruvost, O.; Koebnik, R., CRISPR elements provide a new framework for the genealogy of the citrus canker pathogen Xanthomonas citri pv. citri. BMC Genomics 2019, 20 (1), 917. [CrossRef] [Google Scholar]
- Johansen, I. E.; Liu, Y.; Jorgensen, B.; Bennett, E. P.; Andreasson, E.; Nielsen, K. L.; Blennow, A.; Petersen, B. L., High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 2019, 9 (1), 17715. [CrossRef] [PubMed] [Google Scholar]
- Viswanatha, R.; Brathwaite, R.; Hu, Y.; Li, Z.; Rodiger, J.; Merckaert, P.; Chung, V.; Mohr, S. E.; Perrimon, N., Pooled CRISPR Screens in Drosophila Cells. Curr Protoc Mol Biol 2019, 129 (1), e111. [CrossRef] [PubMed] [Google Scholar]
- Vyas, V. K.; Bernstein, D. A., An Introduction to CRISPR-Mediated Genome Editing in Fungi. J Microbiol Biol Educ 2019, 20 (3). [Google Scholar]
- Wang, M.; Chen, K.; Wu, Q.; Peng, R.; Zhang, R.; Li, J., RCasFISH: CRISPR/dCas9-Mediated in Situ Imaging of mRNA Transcripts in Fixed Cells and Tissues. Anal Chem 2019. [Google Scholar]
- Wang, P. A.; Xiao, H.; Zhong, J. J., CRISPR-Cas9 assisted functional gene editing in the mushroom Ganoderma lucidum. Appl Microbiol Biotechnol 2019. [Google Scholar]
- Wu, J.; Tang, Y.; Zhang, C. L., Targeting N- Terminal Huntingtin with a Dual-sgRNA Strategy by CRISPR/Cas9. Biomed Res Int 2019, 2019, 1039623. [Google Scholar]
- Wu, J.; Yin, H., Engineering guide RNA to reduce the off-target effects of CRISPR. J Genet Genomics 2019. [Google Scholar]
- Xie, L.; Huang, J.; Li, X.; Dai, L.; Lin, X.; Zhang, J.; Luo, J.; Zhang, W., Generation of a homozygous HDAC6 knockout human embryonic stem cell line by CRISPR/Cas9 editing. Stem Cell Res 2019, 41, 101610. [Google Scholar]
- Xing, H.; Meng, L. H., CRISPR-cas9: a powerful tool towards precision medicine in cancer treatment. Acta Pharmacol Sin 2019. [Google Scholar]
- Xu, C. F.; Chen, G. J.; Luo, Y. L.; Zhang, Y.; Zhao, G.; Lu, Z. D.; Czarna, A.; Gu, Z.; Wang, J., Rational designs of in vivo CRISPR-Cas delivery systems. Adv Drug Deliv Rev 2019. [Google Scholar]
- Xu, S.; Zhan, M.; Jiang, C.; He, M.; Yang, L.; Shen, H.; Huang, S.; Huang, X.; Lin, R.; Shi, Y.; Liu, Q.; Chen, W.; Mohan, M.; Wang, J., Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer. Nat Commun 2019, 10 (1), 5492. [CrossRef] [PubMed] [Google Scholar]
- Yang, L. Z.; Wang, Y.; Li, S. Q.; Yao, R. W.; Luan, P. F.; Wu, H.; Carmichael, G. G.; Chen, L. L., Dynamic Imaging of RNA in Living Cells by CRISPR-Cas13 Systems. Mol Cell 2019, 76 (6), 981–997 e7. [CrossRef] [PubMed] [Google Scholar]
- Ye, S.; Chen, G.; Kohnen, M. V.; Wang, W.; Cai, C.; Ding, W.; Wu, C.; Gu, L.; Zheng, Y.; Ma, X.; Lin, C.; Zhu, Q., Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). Plant Biotechnol J 2019. [Google Scholar]
- Zheng, A.; Chevalier, N.; Calderoni, M.; Dubuis, G.; Dormond, O.; Ziros, P. G.; Sykiotis, G. P.; Widmann, C., CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma. Oncotarget 2019, 10 (66), 7058–7070. [CrossRef] [PubMed] [Google Scholar]
- Zhuang, X.; Veltri, D. P.; Long, E. O., Genome- Wide CRISPR Screen Reveals Cancer Cell Resistance to NK Cells Induced by NK-Derived IFN-gamma. Front Immunol 2019, 10, 2879. [CrossRef] [PubMed] [Google Scholar]
- Applications of Next Generation CRISPR-derived Technologies. Hum Gene Ther 2020, 31 (1-2), 1. [Google Scholar]
- Ahmad, S.; Wei, X.; Sheng, Z.; Hu, P.; Tang, S., CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Brief Funct Genomics 2020. [Google Scholar]
- Bai, H.; Liu, L.; An, K.; Lu, X.; Harrison, M.; Zhao, Y.; Yan, R.; Lu, Z.; Li, S.; Lin, S.; Liang, F.; Qin, W., CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish. BMC Genomics 2020, 21 (1), 67. [CrossRef] [PubMed] [Google Scholar]
- Bailis, W., CRISPR/Cas9 Gene Targeting in Primary Mouse Bone Marrow-Derived Macrophages. Methods Mol Biol 2020, 2097, 223–230. [CrossRef] [PubMed] [Google Scholar]
- Bao, A.; Tran, L. P.; Cao, D., CRISPR/Cas9-Based Gene Editing in Soybean. Methods Mol Biol 2020, 2107, 349–364. [CrossRef] [PubMed] [Google Scholar]
- Benyoucef, A.; Marchitto, L.; Touzot, F., CRISPR gene-engineered CYBB (ko) THP-1 cell lines highlight the crucial role of NADPH-induced reactive oxygen species for regulating inflammasome activation. J Allergy Clin Immunol 2020. [Google Scholar]
- Bilir, E.; Vatanoglu Lutz, E. E.; Ozgonul, M. L., Ethical and scientific issues of gene-edited twin by clustered regularly interspaced short palindromic repeats (CRISPR) Cas9 technology. J Turk Ger Gynecol Assoc 2020. [Google Scholar]
- Sternberg, S. H.; Redding, S.; Jinek, M.; Greene, E. C.; Doudna, J. A., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014, 507 (7490), 62–7. [CrossRef] [PubMed] [Google Scholar]
- Cong, L.; Ran, F. A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X.; Jiang, W.; Marraffini, L. A.; Zhang, F., Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339 (6121), 819–23. [Google Scholar]
- Doench, J. G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E. W.; Donovan, K. F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; Virgin, H. W.; Listgarten, J.; Root, D. E., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 2016, 34 (2), 184–191. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.