Open Access
Issue |
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
|
|
---|---|---|
Article Number | 04053 | |
Number of page(s) | 11 | |
Section | Chemical Engineering and Food Biotechnology | |
DOI | https://doi.org/10.1051/e3sconf/202018504053 | |
Published online | 01 September 2020 |
- Wu, S.; He, L.; Zhang, C.; Gong, W.; He, Y.; Luo, Y. Visualization observation of cells growth in low-density polyethylene foaming processes. Polym. Test. 2017, 63, 367–373. [Google Scholar]
- Ester, L. G.; Javier, E.; Miguel, R. P. A. Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: role of xanthine oxidase and NADH dehydrogenase. Composites Part B 2018, 148, 156–165. [CrossRef] [Google Scholar]
- Sun, X.; Liang, W. Cellular structure control and sound absorption of polyolefinmicrolayer sheets. Composites Part B 2016, 87, 21–26. [CrossRef] [Google Scholar]
- Almanza, O.; Rodríguez-Pérez, M. A.; Saja, J. A.Characterisation of the matrix polymer morphology of polyolefins foams by Raman spectroscopy. Polymer 2001, 42, 7117–7126. [Google Scholar]
- Cronin, D. S.; Ouellet, S. Low density polyethylene, expanded polystyrene and expanded polypropylene: Strain rate and size effects on mechanical properties. Polym. Test. 2016, 53, 40–50. [Google Scholar]
- Wan, C.; Lu,Y.; Liu, T.; Zhao, L.; Yuan, W. Foaming of low density polyethylene with carbon dioxide based on its in situ crystallization behavior characterized by high-pressure rheometer. Ind. Eng. Chem. Res. 2017, 56, 10702–10710. [Google Scholar]
- Yang, C.; Xing, Z.; Wang, M.; Zhao, Q.; Wu, G. Merits of the addition of PTFE micropowder in supercritical carbon dioxide foaming of polypropylene: Ultrahigh cell density, high tensile strength, and good sound insulation. Ind. Eng. Chem. Res. 2018, 57, 1498–1505. [Google Scholar]
- Chodak, I. Properties of crosslinked polyolefin-based materials. J. Prog. Polym. Sci. 1995, 20, 1165–1199. [Google Scholar]
- Azizi, H.; Barzin, J.; Morshedian, J. Silane crosslinking of polyethylene: the effects of EVA, ATH and Sb2O3 on properties of the production in continuous grafting of LDPE. Express Polymer Letters 2007, 1, 378–384. [Google Scholar]
- Adem, E.; Burillo, G.; Dakin, V.; Vazquez, M. Promotingpolyethylene foams by irradiation crosslinking in mexico. Radiat. Phys. Chem. 1995, 46, 937–940. [Google Scholar]
- Hill, C.; Eastoe, J. Foams: From nature to industry. Adv. Colloid Interface Sci. 2017, 247, 496–513. [Google Scholar]
- Cardoso, E. C. L.; Scagliusi, S. R.; Parra, D. F.; Lugão, A. B. Gamma-irradiated cross-linked LDPE foams: Characteristics and properties. Radiat. Phys. Chem. 2013, 84, 170–175. [Google Scholar]
- Sinha, A. K.; Narang, H. K.; Bhattacharya, S. Evaluation of bending strength of abaca reinforced polymer composites.Mater. Today 2018, 5, 7284–7288. [Google Scholar]
- Saki, T. A. Reactive melt blending of low-density polyethylenewith poly (acrylic acid). Arab. J. Chem. 2015, 8, 191–199. [Google Scholar]
- Ramkumar, P. L.; Kulkarni, D. M.; Abhijit, V. V.R.; Cherukumudi, A. Investigation of melt flow index and impact strength of foamed LLDPE fo rotational moulding process. Proce. Mater. Sci. 2014, 6, 361–367. [Google Scholar]
- Wang, G.; Zhao, G.; Dong, G.; Mu, Y.; Park, C. B.; Wang, G. Lightweight, super-elastic, and thermal-sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with moldopening. Eur. Polym. J. 2018, 103, 68–79. [Google Scholar]
- Das, M.; Shu, C. M. A green approach towards adoption of chemical reaction model on 2,5-dimethyl-2,5-di-(tert-butylperoxy)hexane decomposition by differential isoconversional kinetic analysis. J. Hazard. Mater. 2016, 301, 222–232. [Google Scholar]
- Sheshkali, H. R. Z.; Assempour, H.; Nazockdast, H. Parameters affecting the grafting reaction and side reactions involved in the free-radical melt grafting of maleic anhydride onto high-density. J. Appl. Polym. Sci. 2007, 105, 1869–1881. [Google Scholar]
- Jurczuk, K.; Galeski, A.; Morawiec, J. Effect of poly(tetrafluoroethylene) nanofibers on foaming behavior of linear and branched polypropylenes. Eur. Polym. J. 2017, 88, 171–182. [Google Scholar]
- Liang, J. Z.; Zhong, L. Elongational properties of low density polyethylene using meltspinning technique. Polym. Test 2010, 29, 972–976. [Google Scholar]
- Stanley, A. E. Laser sensitized dissociation of tetramethyl germane. J. Photochem. Photobiol. A 1996, 99, 1–7. [CrossRef] [Google Scholar]
- Hsiao, L. W.; Lai, Y. D.; Lai, J. T.; Hsu, C. C.; Wang, N. Y.; Steven; Wang, S. S.; Jan, J. S. Cross-linked polypeptide-based gel particles by emulsion for efficient protein encapsulation. Polymer 2017, 115, 261–272. [Google Scholar]
- Guaresti, O.; García–Astrain, C.; Aguirresarobe, R.H.; Eceiza, A.; Gabilondo, N. Synthesis of stimuli–responsive chitosan–based hydrogels by Diels–Alder cross–linking `click´ reaction as potential carriers for drug administration. Carbohydr. Polym. 2018, 183, 278–286. [Google Scholar]
- Teng, J.; Yang, B.; Zhang, L. Q.; Lin, S. Q.; Xu, L.; Zhong, G. J.; Tang, J. H.; Li, Z. M. Ultra-high mechanical properties of porous composites based on regenerated cellulose and cross-linked poly(ethylene glycol). Carbohydr. Polym. 2018, 179, 244–251. [Google Scholar]
- Dias, D. B.; Silva, L. G. A. Polyethylene foams cross-linked by electron beam. Radiat. Phys. Chem. 2007, 76, 1696–1697. [Google Scholar]
- Wang, S. H.; Yu, S. H.; Xiang, J.; Li, J. Y.; Li, S. T. DC breakdown strength of crosslinked polyethylene based nanocomposites at different temperatures. IEEE T. Dielect. El. In. 2020, 27, 482–488. [CrossRef] [Google Scholar]
- Dorigato, A.; Pegoretti, A. Fracture behaviour of linear low density polyethylene–fumed silica nanocomposites. Eng. Fract. Mech. 2012, 79, 213–224. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.