Open Access
Issue
E3S Web Conf.
Volume 189, 2020
2020 International Conference on Agricultural Science and Technology and Food Engineering (ASTFE 2020)
Article Number 02029
Number of page(s) 7
Section Food Biochemistry and Food Processing
DOI https://doi.org/10.1051/e3sconf/202018902029
Published online 15 September 2020
  1. Anastasiadi, M., Pratsinis, H., Kletsas, D., et al. (2010) Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: evaluation of the antioxidant activities of their extracts. J. Food Res. Int., 43: 805-813. [Google Scholar]
  2. Martins G. R., Amaral F. R. L., Brum F. L., et al. (2020) Chemical characterization, antioxidant and antimicrobial activities of açaí seed (Euterpe oleracea Mart.) extracts containing Aand B-type procyanidins. LWT-Food Science and Technology., 132:1-11. [Google Scholar]
  3. Quesada, H., Bas, J. M. D., Pajuelo, D., et al. (2009) Grape seed proanthocyanidins correct dyslipemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. J. Obesity, 33: 1007-1012. [Google Scholar]
  4. Donsì F., Ferrari, G., Pataro, G. (2010) Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. J. Food Eng. Rev., 2: 109-130. [Google Scholar]
  5. Yin, Y. G., He, G. D. (2008) A fast high-intensity pulsed electric fields (PEF)-assisted extraction of dissoluble calcium from bone. J. Sep. Purif. Technol., 61: 148-152. [Google Scholar]
  6. Jaeger, H., Schulz, M., Lu, P., et al. (2012) Adjustment of milling, mash electroporation and pressing for the development of a pef assisted juice production in industrial scale. J. Innov. Food Sci. Emerg. Technol., 14: 46-60. [Google Scholar]
  7. Puértolas, E., Cregenzán, O., Luengo, E., et al. (2013) Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. J. Food Chem, 136: 1330-1336. [Google Scholar]
  8. Roohinejad, S., Everett, D. W., Oey, I. (2014) Effect of pulsed electric field processing on carotenoid extractability of carrot puree. J. Food Sci. Technol, 49: 2120-2127. [Google Scholar]
  9. Samaranayaka, A. G. P., Li-Chan, E. C. Y. (2011) Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J. Funct. Food., 3: 229-254. [Google Scholar]
  10. Sun, B., Ricardodasilva, J. M., Spranger, I. (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem., 46: 4267-4274. [Google Scholar]
  11. He, G. D., Yin, Y. G., Yan, X. X., et al. (2017) SemiBionic Extraction of Effective Ingredient from Fishbone by High Intensity Pulsed Electric Fields. J. Journal of Food Process Engineering, 40. [Google Scholar]
  12. Wang, X. W., Zhao, Y., Shen, Y. J. (2011) Optimization of procyanidins extraction from Vitis amurensis seeds. J. Food Sci, 32: 21-24. [Google Scholar]
  13. Liu, X. N., Kang, J., Zhao, J. L. (2016) Study on extraction process of Proanthocyanidins from black glutinous corn by response surface ultrasound. J. Food Ind, 128-131. [Google Scholar]
  14. Rong, X., Zhang, X. L., Li, T. Z. (2016) Optimization of microwave assisted extraction of Proanthocyanidins from prickly seeds by response surface test. J. Food Sci, 37: 41-46. [Google Scholar]
  15. Prieto, P., Pineda, M., Aguilar, M. (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. J. Anal. Biochem., 269: 337-341. [Google Scholar]
  16. Shimada, K., Fujikawa, K., Yahara, K., et al. (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin. J. Agric. Food Chem., 40: 945-948. [Google Scholar]
  17. Dinis, T. C. P., Madeira, V. M. C., Almeidam, L. M. (1994) Action of phenolic derivates (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and peroxyl radicals scavengers. J. Archives of Biochemistry and Biophysics, 315: 161-169. [Google Scholar]
  18. Boussetta, N., Lesaint, O., Vorobiev, E. (2013) A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. J. Innovative Food Science & Emerging Technologies, 19: 124-132. [Google Scholar]
  19. Boussetta, N., Vorobiev, E., Le, L. H., et al. (2012) Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. Food Science and Technology, 46: 127-134. [Google Scholar]
  20. Gordon, M. F., (1990) The Mechanism of antioxidant action in vitro. In: Hudson, B. J. F. (Eds.), Food antioxidants. Elsevier Applied Science, London. 1-18. [Google Scholar]
  21. Chen, Y. R., Kang, J., Zhao, F. R. (2014) Antibacterial and antioxidant activity of procyanidins from grape seeds of Cabernet Sauvignon. J. Food Sci. Technol., 39: 209-215. [Google Scholar]
  22. Craft, B. D., Kerrihard, A. L., Amarowicz, R., et al. (2012) Phenol-based antioxidants and the in vitro methods used for their assessment. J. Comprehensive Reviews in Food Science and Food Safety, 11: 148-173. [Google Scholar]
  23. Spranger, I., Sun, B., Mateus, A. M., et al. (2008) Chemical characterization and antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds. J. Food Chem, 108: 519-532. [Google Scholar]
  24. Zhou, H. C., Lin, Y. M., Li, Y. Y., et al. (2011) Antioxidant properties of polymeric proanthocyanidins from fruit stones and pericarps of Litchi chinensis Sonn. J. Food Research International, 44: 613-620. [Google Scholar]
  25. Shahidi, F., Liyana-Pathirana, C. M., Wall, D. S. (2006) Antioxidant activity of white and black sesame seeds and their hull fractions. J. Food Chem, 99: 478-483. [Google Scholar]
  26. Mira, L., Fernandez, M,T., Santos, M., et al. (2002) Interaction of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. J. Free Radical Research, 36: 1199-1208. [Google Scholar]
  27. Maqsood, S., Benjakul, S. (2010) Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. J. Food Chemistry, 119: 123-132. [Google Scholar]
  28. Perva-Uzunalic, A., Skerget, M., Knez, Z., et al. (2006) Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. J. Food Chemistry, 96: 597-605. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.