Open Access
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
Article Number 02009
Number of page(s) 4
Section Renewable Energy and New Energy Technology
Published online 15 October 2020
  1. F. Wang, J. Tan, L. Ma, Y. Leng, Effects of key factors on solar aided methane steam reforming in porous medium thermochemical reactor, Energy Convers. Manag. 103 (2015) 419-430. doi: 10.1016/j.enconman.2015.06.049 [Google Scholar]
  2. D.G. Avraam, T.I. Halkides, D.K. Liguras, O.A. Bereketidou, M.A. Goula, An experimental and theoretical approach for the biogas steam reforming reaction, Int. J. Hydrogen Energy.. 35 (2010) 9818-9827. doi: j.ijhydene.2010.05.106. [Google Scholar]
  3. M. Ashrafi, C. Pfeifer, T. Pröll, H. Hofbauer, Experimental study of model biogas catalytic steam reforming: 2. Impact of sulfur on the deactivation and regeneration of Ni-based catalysts, Energy and Fuels.. 22 (2008) 4190-4195. doi: ef8000828. [Google Scholar]
  4. L.B. Braga, J.L. Silveira, M.E. Da Silva, C.E. Tuna, E.B. Machin, D.T. Pedroso, Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis, Renew. Sustain. Energy Rev.. 28 (2013) 166-173. doi: j.rser.2013.07.060. [Google Scholar]
  5. A. Iulianelli, S. Liguori, Y. Huang, A. Basile, Model biogas steam reforming in a thin Pd-supported membrane reactor to generate clean hydrogen for fuel cells, J. Power Sources.. 273 (2015) 25-32. doi: j.jpowsour.2014.09.058. [Google Scholar]
  6. P. Kolbitsch, C. Pfeifer, H. Hofbauer, Catalytic steam reforming of model biogas, Fuel.. 87 (2008) 701-706. doi: j.fuel.2007.06.002. [Google Scholar]
  7. R. Gu, J. Ding, Y. Wang, Q. Yuan, W. Wang, J. Lu, Heat transfer and storage performance of steam methane reforming in tubular reactor with focused solar simulator, Appl. Energy. 233-234 (2019) 789-801. doi: j.apenergy.2018.10.072. [Google Scholar]
  8. M. Böhmer, U. Langnickel, M. Sanchez, Solar steam reforming of methane, Sol. Energy Mater.. 24 (1991) 441-448. doi: 0165-1633(91)90081-U. [CrossRef] [Google Scholar]
  9. V.K. Jebasingh, G.M.J. Herbert, A review of solar parabolic trough collector, Renew. Sustain. Energy Rev.. 54 (2016) 1085-1091. doi: j.rser.2015.10.043. [CrossRef] [Google Scholar]
  10. H.J. Alves, C. Bley Junior, R.R. Niklevicz, E.P. Frigo, M.S. Frigo, C.H. Coimbra-Araújo, Overview of hydrogen production technologies from biogas and the applications in fuel cells, Int. J. Hydrogen Energy.. 38 (2013) 5215-5225. doi: j.ijhydene.2013.02.057. [Google Scholar]
  11. M.A. Nieva, M.M. Villaverde, A. Monzón, T.F. Garetto, A.J. Marchi, Steam-methane reforming at low temperature on nickel-based catalysts, Chem. Eng. J.. 235 (2014) 158-166. doi: j.cej.2013.09.030. [Google Scholar]
  12. G. Di Marcoberardino, S. Foresti, M. Binotti, G. Manzolini, Potentiality of a biogas membrane reformer for decentralized hydrogen production, Chem. Eng. Process. Process Intensif.. 129 (2018) 131-141. doi: j.cep.2018.04.023. [CrossRef] [Google Scholar]
  13. E. Fernandez, A. Helmi, J.A. Medrano, K. Coenen, A. Arratibel, Palladium based membranes and membrane reactors for hydrogen production and purification: An overview of research activities at Tecnalia and TU / e, Int. J. Hydrogen Energy.. 2 (2017) 13763-13776. doi: j.ijhydene.2017.03.067. [Google Scholar]
  14. N. El Gharbi, H. Derbal, S. Bouaichaoui, N. Said, A comparative study between parabolic trough collector and linear Fresnel reflector technologies, Energy Procedia.. 6 (2011) 565-572. doi: j.egypro.2011.05.065. [Google Scholar]
  15. A. Rovira, R. Barbero, M. José, R. Abbas, F. Varela, Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems, Appl. Energy.. 162 (2016) 990-1000. doi: j.apenergy.2015.11.001. [Google Scholar]
  16. G. Zhu, T. Wendelin, M.J. Wagner, C. Kutscher, History, current state, and future of linear Fresnel concentrating solar collectors, Sol. Energy.. 103 (2014) 639-652. doi: j.solener.2013.05.021. [Google Scholar]
  17. Y. Jin, Z. Rui, Y. Tian, Y. Lin, Y. Li, Sequential simulation of dense oxygen permeation membrane reactor for hydrogen production from oxidative steam reforming of ethanol with ASPEN PLUS, Int. J. Hydrogen Energy.. 35 (2010) 6691-6698. doi: j.ijhydene.2010.04.042. [Google Scholar]
  18. F. Gallucci, L. Paturzo, A. Basile, Hydrogen Recovery from Methanol Steam Reforming in a Dense Membrane Reactor: Simulation Study, Ind. Eng. Chem. Res.. 43 (2004) 2420-2432. [Google Scholar]
  19. G. Ye, D. Xie, W. Qiao, J.R. Grace, C.J. Lim, Modeling of fluidized bed membrane reactors for hydrogen production from steam methane reforming with Aspen Plus, Int. J. Hydrogen Energy.. 34 (2009) 4755-4762. doi: j.ijhydene.2009.03.047. [Google Scholar]
  20. A. Brunetti, A. Caravella, G. Barbieri, E. Drioli, Simulation study of water gas shift reaction in a membrane reactor, J. Memb. Sci.. 306 (2007) 329-340. doi: j.memsci.2007.09.009. [Google Scholar]
  21. W.H. Chen, W.Z. Syu, C.I. Hung, Numerical characterization on concentration polarization of hydrogen permeation in a Pd-based membrane tube, Int. J. Hydrogen Energy.. 36 (2011) 14734-14744. doi: j.ijhydene.2011.08.043. [Google Scholar]
  22. SOLSRGIS, Solar resource maps and GIS data for 180+ countries | Solargis, Solargis. (2019) All. [Google Scholar]
  23. P.L. Singh, R.M. Sarviya, J.L. Bhagoria, Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers, Appl. Energy.. 87 (2010) 541-550. doi: j.apenergy.2009.08.019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.