Open Access
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
Article Number 04062
Number of page(s) 10
Section Environmental Protection and Pollution Control
Published online 15 October 2020
  1. Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann JM, Bouallou C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng. 30 (2010): 53-62. [Google Scholar]
  2. Krzywanski J, Czakiert T, Muskala W, Nowak W. Modelling of CO2, CO, SO2, O2 and NOx emissions from the oxy-fuel combustion in a circulating fluidized bed. Fuel Process. Technol. 92 (2011): 590-596. [CrossRef] [Google Scholar]
  3. Luo Z, Cheng W, Wu B, Zhao Y, Zhang J. A mode transition strategy from air to oxyfuel combustion in a 35 MW coal-fired power plant boiler. Korean J. Chem. Eng. 34 (2017): 1554-1562. [Google Scholar]
  4. Fleig D, Andersson K, Johnsson F, Leckner B. Conversion of sulfur during pulverized oxy-coal combustion. Energ. Fuel. 25 (2011): 647-655. [CrossRef] [Google Scholar]
  5. Yoshiie R, Hikosaka N, Nunome Y, Ueki Y, Naruse I. Effects of flue gas re-circulation and nitrogen contents in coal on NOx emissions under oxy-fuel coal combustion. Fuel Process. Te c h n o l. 136 (2015): 106-111. [CrossRef] [Google Scholar]
  6. Tao W, Zhang X, Liu J, Liu H, Guo Y, Sun B. Plasma-assisted catalytic conversion of NO over Cu-Fe catalysts supported on ZSM-5 and carbon nanotubes at low temperature. Fuel Process. Technol. 178 (2018): 53-61. [Google Scholar]
  7. Zhu Z, Ma Y, Zan Q, Fang L, Zhang W, Yan N. Study on a new wet flue gas desulfurization method based on the bunsen reaction of sulfur-iodine thermochemical cycle. Fuel. 195 (2017): 33-37. [CrossRef] [Google Scholar]
  8. Wang Z, Zhang Y, Tan Z, Li Q. A wet process for oxidation-absorption of nitric oxide by persulfate/calcium peroxide. Chem. Eng. J. 350 (2018): 767-775. [Google Scholar]
  9. Raghunath C.V., Mondal MK. Reactive absorption of NO and SO2 into aqueous NaClO in a counter-current spray column. Asia-Pac J Chem. Eng. 11 (2016): 88-97. [CrossRef] [Google Scholar]
  10. Zhao Y, Han Y, Wang T, Sun Z, Fang C. Simultaneous removal of SO2 and NO from flue gas using iron-containing polyoxometalates as heterogeneous catalyst in UV-Fenton-like process. Fuel. 250 (2019): 42-51. [CrossRef] [Google Scholar]
  11. Han J, Kim H, Sakaguchi Y, Cheol-Ho K, Yao H. The synergetic effect of plasma and catalyst on simultaneous removal of SO2 and NOx. Asia-Pac J Chem. Eng. 5 (2010): 441-446. [Google Scholar]
  12. Hao L, Hao W, Bao J, Yu X, Yang H. Photochemical removal of NO and SO2 from flue gas using UV irradiation. Asia-Pac J Chem. Eng. 9 (2014): 775-781. [Google Scholar]
  13. White V, Wright A, Tappe S, Yan J. The air products vattenfall oxyfuel CO2 compression and purification pilot plant at schwarze pumpe. Energy Procedia. 37 (2013): 1490-1499. [Google Scholar]
  14. Winkler F, Schoedel N, Zander H-J, Ritter R. Cold deNOx development for oxyfuel power plants. Int. J. Greenh. Gas Con. 5 (2011): S231-S237. [Google Scholar]
  15. Darde A, Prabhakar R, Tranier J-P, Perrin N. Air separation and flue gas compression and purification units for oxy-coal combustion systems. Energy Procedia. 1 (2009): 527-534. [Google Scholar]
  16. Stanger R, Ting T, Spero C, Wall T. Oxyfuel derived CO2 compression experiments with NOx, SOx and mercury removal—experiments involving compression of slip-streams from the Callide Oxyfuel Project (COP). Int. J. Greenh. Gas Con. 41 (2015): 50-59. [CrossRef] [Google Scholar]
  17. Iloeje C.O., Field R.P., Ghoniem A.F., et al. Modeling and parametric analysis of nitrogen and sulfur oxide removal from oxy-combustion flue gas using a single column absorber[J]. Fuel, 160 (2015): 178-188. [Google Scholar]
  18. Ajdari S, Normann F, Andersson K. Evaluation of operating and design parameters of pressurized flue gas systems with integrated removal of NOx a n d SO x. Energ. Fuel. 33 (2019): 3339-3348. [CrossRef] [Google Scholar]
  19. Ajdari S, Normann F, Andersson K, Johnsson F. Reduced mechanism for nitrogen and sulfur chemistry in pressurized flue gas systems. Ind. Eng. Chem. Res. 55 (2016): 5514-5525. [Google Scholar]
  20. Ajdari S, Normann F, Andersson K, Johnsson F. Modeling the nitrogen and sulfur chemistry in pressurized flue gas systems. Ind. Eng. Chem. Res. 54 (2015): 1216-1227. [Google Scholar]
  21. Ting T, Stanger R, Wall T. Laboratory investigation of high pressure NO oxidation to NO2 and capture with liquid and gaseous water under oxy-fuel CO2 compression conditions. Int. J. Greenh. Gas Con. 18 (2013): 15-22. [CrossRef] [Google Scholar]
  22. Platt U, Perner D, Harris GW, Winer AM, Pitts JN. Observations of nitrous acid in an urban atmosphere by differential optical absorption. Nature. 285 (1980): 312-314. [Google Scholar]
  23. Tumsa TZ, Lee SH, Normann F, Andersson K, Ajdari S, Yang W. Concomitant removal of NOx and SOx from a pressurized oxy-fuel combustion process using a direct contact column. Chem. Eng. Res. Des. 131 (2018): 626-634. [Google Scholar]
  24. Cronin AA, Barth JAC, Elliot T, Kalin RM. Recharge velocity and geochemical evolution for the Permo-Triassic Sherwood Sandstone, Northern Ireland. J. Hydrol. 315 (2005): 308-324. [CrossRef] [Google Scholar]
  25. Voigt S, Orphal J, Burrows JP. The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy. J. Photoch. Photobio. A. 149 (2002): 1-7. [CrossRef] [Google Scholar]
  26. Stutz J, Kim ES, Platt U, Bruno P, Perrino C, Febo A. UV-visible absorption cross section of nitrous acid. J. Geophys. Res-Atmos. 105 (2000): 14585-14592. [CrossRef] [Google Scholar]
  27. Yu S, Liu D, Chen J. Experimental study on the convesion of NOx to nitrous acid at pressres. Journal of Chinese Society of Power Engineering. 38 (2018): 725-731(in chinese). [Google Scholar]
  28. Cheng Q, Liu D, Chen J, Jin J, Li W, Yu S. Gas-phase oxidation of NO at high pressure relevant to sour gas compression purification process for oxy-fuel combustion flue gas. Chinese J. Chem. Eng. 27 (2019): 884-895. [CrossRef] [Google Scholar]
  29. Shen CH, Rochelle GT. Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite. Environ. Sci. Technol. 32 (2015): 1994-2003. [Google Scholar]
  30. Torrente-Murciano L, White V, Petrocelli F, Chadwick D. Study of individual reactions of the sour compression process for the purification of oxyfuel-derived CO2. Int. J. Greenh. Gas Con. 5 (2011): S224-S230. [Google Scholar]
  31. Normann F, Jansson E, Petersson T, Andersson K. Nitrogen and sulphur chemistry in pressurised flue gas systems: a comparison of modelling and experiments. Int. J. Greenh. Gas Con. 12 (2013): 26-34. [CrossRef] [Google Scholar]
  32. Liémans I, Alban B, Tranier JP, Thomas D. SOx and NOx absorption based removal into acidic conditions for the flue gas treatment in oxy-fuel combustion. Energy Procedia. 4 (2011): 2847-2854. [Google Scholar]
  33. Tang N, Yue L, Wang H, Ling X, Wu Z. Enhanced absorption process of NO2 in CaSO3 slurry by the addition of MgSO4. Chem. Eng. J. 160 (2010): 145-149. [Google Scholar]
  34. Ping F, Cen C, Tang Z, Zhong P, Chen D, Chen Z. Simultaneous removal of SO2 and NOx by wet scrubbing using urea solution. Chem. Eng. J. 168 (2011): 52-59. [Google Scholar]
  35. Yi Z, Hao R, Bo Y, Jiang J. Simultaneous removal of SO2, NO and HgO through an integrative process utilizing a cost-effective complex oxidant. J. Hazard. Mater. 301 (2015): 74-83. [Google Scholar]
  36. Bausach M, Pera-Titus M, Fite C, Cuill F, Izquierdo JF, Tejero J, Iborra M. Water-induced rearrangement of Ca(OH)2 (0001) surfaces reacted with SO2. Aiche J. 52 (2010): 2876-2886. [Google Scholar]
  37. Sun Z, Wang S, Zhou Q, Hui SE. Experimental study on desulfurization efficiency and gas–liquid mass transfer in a new liquid-screen desulfurization system. Appl. Energ. 87 (2010): 1505-1512. [CrossRef] [Google Scholar]
  38. Gao J, Chen G, Fu X, Yin Y, Wu S, Qin Y. Enhancement mechanism of SO2 removal with calcium hydroxide in the presence of NO2. Korean J. Chem. Eng. 29 (2012): 263-269. [Google Scholar]
  39. Li S, Li H, Wei L, Edding EG, Ren Q, Lu Q. Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1 MW th pilot-scale oxy-fuel circulating fluidized bed. Appl. Energ. 197 (2017): 203-211. [CrossRef] [Google Scholar]
  40. Chen L, Wang C, Zhao F, Zou C, Anthony EJ. The combined Effect of H2O and SO2 on the simultaneous calcination/sulfation reaction in CFBs. Aiche J. 65 (2019): 1256-1268. [Google Scholar]
  41. Adewuyi YG, Sakyi NY, Arif KM. Simultaneous removal of NO and SO2 from flue gas by combined heat and Fe2+ activated aqueous persulfate solutions. Chemosphere. 193 (2018): 1216-1225. [PubMed] [Google Scholar]
  42. Liu D, Wall T, Stanger R. CO2 quality control through scrubbing in oxy-fuel combustion: rate limitation due to S(IV) oxidation in sodium solutions in scrubbers and prior to waste disposal. Int. J. Greenh. Gas Con. 39 (2015): 148-157. [Google Scholar]
  43. Torrente-Murciano L, White V, Petrocelli F, Chadwick D. Sour compression process for the removal of SOx and NOx from oxyfuel-derived CO2. Energy Procedia. 4 (2011): 908-916. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.