Open Access
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 02002
Number of page(s) 10
Section Energy Efficiency in Buildings and Industry
Published online 22 October 2020
  1. International Energy Agency, UN Environment Programme, Global Alliance for Buildings and Construction, International Energy Agency and the United Nations Environment Programme (2019): 2019 global status report for buildings and construction: Towards a zero-emission, efficient and resilient buildings and const, 2019. [Google Scholar]
  2. E. (2018) Recast, DIRECTIVE (EU) 2018/844 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance), n.d. [Google Scholar]
  3. Global Energy & CO2 Status Report 2018 – Analysis IEA, (n.d.). (accessed December 9, 2019). [Google Scholar]
  4. M. Cellura, F. Guarino, S. Longo, M. Mistretta, A. Orioli, The role of the building sector for reducing energy consumption and greenhouse gases: An Italian case study, Renew. Energy. 60 (2013) 586–597. [Google Scholar]
  5. M. Cellura, A. Di Gangi, S. Longo, A. Orioli, An Italian input-output model for the assessment of energy and environmental benefits arising from retrofit actions of buildings, Energy Build. 62 (2013) 97–106. [CrossRef] [Google Scholar]
  6. N. O’Connell, P. Pinson, H. Madsen, M. O’Malley, Benefits and challenges of electrical demand response: A critical review, Renew. Sustain. Energy Rev. 39 (2014) 686–699. [CrossRef] [Google Scholar]
  7. B. Initiatives, Position Paper of the IEA Energy in Buildings and Communities Program (EBC) Annex 67 “Energy Flexible Buildings,” (2017) 1–16. [Google Scholar]
  8. C. Finck, P. Beagon, J. Claus, P. Thibault, P.J.C. Vogler-Finck, K. Zhang, H. Kazmi, Review of applied and tested control possibilities for energy flexibility in buildings: a technical report from IEA EBC Annex 67 Energy Flexible Buildings, (2017) 1–59. [Google Scholar]
  9. J. Clauß, C. Finck, P. Vogler-finck, P. Beagon, Control strategies for building energy systems to unlock demand side flexibility – A review Norwegian University of Science and Technology, Trondheim, Norway Eindhoven University of Technology, Eindhoven, Netherlands Neogrid Technologies ApS / Aalborg, 15th Int. Conf. Int. Build. Perform. (2017) 611–620. [Google Scholar]
  10. Y. Chen, P. Xu, J. Gu, F. Schmidt, W. Li, Measures to improve energy demand flexibility in buildings for demand response (DR): A review, Energy Build. 177 (2018) 125–139. [CrossRef] [Google Scholar]
  11. I.E. Agency., IEA EBC Annex 67 Energy Flexible Buildings, (n.d.). [Google Scholar]
  12. I. Vassileva, J. Campillo, Consumers’ Perspective on Full-Scale Adoption of Smart Meters: A Case Study in Västerås, Sweden, Resources. 5 (2016) 3. [CrossRef] [Google Scholar]
  13. S. Gottwalt, W. Ketter, C. Block, J. Collins, C. Weinhardt, Demand side management—A simulation of household behavior under variable prices, Energy Policy. 39 (2011) 8163–8174. [CrossRef] [Google Scholar]
  14. T.Q. Péan, J. Salom, J. Ortiz, Potential and optimization of a price-based control strategy for improving energy flexibility in Mediterranean buildings, Energy Procedia. 122 (2017) 463–468. [CrossRef] [Google Scholar]
  15. T. Péan, J. Salom, J. Ortiz, Environmental and Economic Impact of Demand Response Strategies for Energy Flexible Buildings, Build. Simul. Optim. BSO 2018, 11-12th Sept. 2018, Cambridge. (2018) 277–283. [Google Scholar]
  16. T. Péan, R. Costa-Castelló, J. Salom, Price and carbon-based energy flexibility of residential heating and cooling loads using model predictive control, Sustain. Cities Soc. 50 (2019) 101579. [CrossRef] [Google Scholar]
  17. K. Foteinaki, R. Li, A. Heller, C. Rode, Heating system energy flexibility of lowenergy residential buildings, Energy Build. 180 (2018) 95–108. [CrossRef] [Google Scholar]
  18. G. Reynders, R. Amaral Lopes, A. Marszal-Pomianowska, D. Aelenei, J. Martins, D. Saelens, Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage, Energy Build. 166 (2018) 372–390. [CrossRef] [Google Scholar]
  19. DOE, Engineering Reference of EnergyPlus, (2017) 1–1704. [Google Scholar]
  20. ASHRAE, Inc. 2009 ASHRAE handbook: fundamentals. American Society of Heating, Refrigeration and Air-Conditioning Engineers, (2009). [Google Scholar]
  21. J. Le Dréau, P. Heiselberg, Energy flexibility of residential buildings using short term heat storage in the thermal mass, Energy. 111 (2016) 991–1002. [CrossRef] [Google Scholar]
  22. ENEL,, (n.d.). [Google Scholar]
  23. GME Gestore dei Mercati Energetici, Esiti dei mercati MGP esiti, (n.d.). [Google Scholar]
  24. R. 303/2019 ISPRA, Fattori di emissione atmosferica di gas a effetto serra nel settore elettrico nazionale e nei principali Paesi Europei, 2019. [Google Scholar]
  25. Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, Technology-specific Cost and Performance Parameters, Clim. Chang. 2014 Mitig. Clim. Chang. (2015) 1329–1356. [Google Scholar]
  26. M. Cellura, M.A. Cusenza, S. Longo, Energy-related GHG emissions balances: IPCC versus LCA, Sci. Total Environ. 628–629 (2018) 1328–1339. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.