Open Access
Issue
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 02011
Number of page(s) 8
Section Energy Efficiency in Buildings and Industry
DOI https://doi.org/10.1051/e3sconf/202019702011
Published online 22 October 2020
  1. European Environment Agency (EEA), Annual European Union greenhouse gas inventory 1990–2017 and inventory report 2019, EEA/PUBL/2019/051 [Google Scholar]
  2. International Energy Agency, World Energy Outlook 2018, 2018 [Google Scholar]
  3. SPIRE initiative Roadmap, 2013 [Google Scholar]
  4. M. Astolfi, D. Alfani, S. Lasala, M. Macchi, Comparison between ORC and CO2 power systems for the exploitation of low-medium temperature heat sources, Energy J., 2018, 161, 1250-1261 [CrossRef] [Google Scholar]
  5. A. Giovannelli, E.M. Archilei, C. Salvini, M. A. Bashir, G. Messina, Design of the Power Group for a 15 MW Supercritical Carbon Dioxide Plant, 2019 4th International Conference on Smart and Sustainable Technologies, SpliTech 2019, DOI: 10.23919/SpliTech.2019.8783106 [Google Scholar]
  6. A. Giovannelli, E. M. Archilei, G. Di Lorenzo, C. Salvini, M. A. Bashir, G. Messina, Design of power-blocks for medium-scale supercritical carbon dioxide plants, Int. J. Energy Res., 2020, https://doi.org/10.1002/er.5539. [Google Scholar]
  7. M. Biondi, A. Giovannelli, G. Di Lorenzo, C. Salvini, Application of a s-CO2 waste heat recovery system for steel industry: a parametric study, Case Studies in Thermal Engineering, (submitted) [Google Scholar]
  8. M. Biondi, A. Giovannelli, G. Di Lorenzo, C. Salvini, Techno-economic Analysis of a sCO2 Power Plant for Waste Heat Recovery in Steel Industry, Energy Reports (to be published) [Google Scholar]
  9. K. Brun, P. Friedman, R. Dennis, Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles, Elsevier, 2017. [Google Scholar]
  10. X. Wang, Y. Yang, Y. Zheng, Y. Dai, Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application, Energy J., 2017; 119, 971-982 [CrossRef] [Google Scholar]
  11. E.D. Sánchez Villafana, J. P. Vargas Machuca Bueno, Thermoeconomic and environmental analysis and optimization of the supercritical CO2 cycle integration in a simple cycle power plant, Energy J., 2019; 152, 1-12. [Google Scholar]
  12. S. A. Wright, C. S. Davidson, W. O. Scammel, Thermo-Economic Analysis of Four sCO2 Waste Heat Recovery Power Systems, Proceedings of the ASME Paper, 5th International Symposium Supercritical CO2 Power Cycles [Google Scholar]
  13. M. Marchionni, G. Bianchi, S. A. Tassou, Techno-economic assessment of JouleBrayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state, Energy J., 2018;148:1140-1152. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.