Open Access
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 06001
Number of page(s) 13
Section Internal Combustion Engines
Published online 22 October 2020
  1. European Environment Agency, Annual European Union Greenhouse Gas Inventory 1990-2012 and Inventory Report, Report No.: 9 (2014). [Google Scholar]
  2. G. Police, S. Diana, V. Giglio, et al. Downsizing of SI engines by turbo-charging. Proc. of ASME Conf. on Eng. Systems Design and Analysis, Vol 42517, pp. 463-476, (2006). [Google Scholar]
  3. L. Teodosio, D. Pirrello, F. Berni, V. De Bellis et al. Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine. Applied Energy 216, 91-104, (2018). [CrossRef] [Google Scholar]
  4. L. Teodosio, V. De Bellis, F. Bozza, D. Tufano. Numerical Study of the Potential of a Variable Compression ratio Concept applied to a downsized turbocharged VVA Spark Ignition engine. SAE Technical Paper 2017-24-0015, (2017). [Google Scholar]
  5. M. Cordier, O. Laget, F. Duffour, X. Gautrot, et al. Increasing Modern Spark Ignition Engine Efficiency: A comprehension study of High CR and Atkinson cycle. SAE Technical Paper 2016-01-2172, (2016). [Google Scholar]
  6. F. Bozza, L. Teodosio, V. De Bellis, D. Cacciatore, et al. A Modelling study to analyse the compression ratio effects on combustion and knock phenomena in a highperformance spark-ignition GDI engine. Int. Review on Modelling and Simulations 11 (3): 187-197, (2018). [CrossRef] [Google Scholar]
  7. E. Galloni, G. Fontana, and R. Palmaccio. Numerical Analyses of EGR techniques in a turbocharged spark-ignition engine. Appl. Therm. Eng. 39, 95-104, (2012). [CrossRef] [Google Scholar]
  8. C. Tornatore, F. Bozza, V. De Bellis, L. Teodosio et al. Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine. Energy 172: 968-976, (2019). [CrossRef] [Google Scholar]
  9. A. D’Adamo, F. Berni, S. Breda, M. Lugli et al. A numerical investigation on the potentials of water injection as a fuel efficiency enhancer in highly downsized GDI engines. SAE Technical Paper 2015-01-0393, (2015). [Google Scholar]
  10. A. Boretti. Water Injection in directly injected turbocharged spark ignition engine. Applied Thermal Engineering 52 (1): 62-68, (2013). [CrossRef] [Google Scholar]
  11. Z. Ran, D. Hariharan, B. Lawler, S. Mamalis. Exploring the potential of ethanol, CNG, and syngas as fuels for lean spark-ignition combustion – an experimental study. Energy 191, (2020). [Google Scholar]
  12. X. Wu, R. Daniel, G. Tian, H. Xu et al. Dual-injection: The flexible, bi-fuel concept for spark ignition engines fueled with various gasoline and bio-fuel blends. Applied Energy 88 (7): 2305-14, (2011). [CrossRef] [Google Scholar]
  13. F. Bozza, D. Tufano, E. Malfi, L. Teodosio et al. Performance and Emissions of an advanced multi-cylinder SI engine operating in ultra-lean conditions. SAE Technical Paper 2019-24-0075, (2019). [Google Scholar]
  14. L. Teodosio, V. De Bellis, F. Bozza. Combined effects of valve strategies, compression ratio, water injection, and cooled EGR on the Fuel Consumption of a Small Turbocharged VVA Spark-Ignition Engine. SAE Int. Journal of Engines 11 (6): 643-656, (2018). [Google Scholar]
  15. F. Bozza, V. De Bellis, L. Teodosio, D. Tufano et al. Techniques for CO2 emission reduction over a WLTC. A numerical comparison of increased compression ratio, cooled EGR and water injection. SAE Technical Paper 2018-37-0008, (2018). [Google Scholar]
  16. C. Ji, S. Wang. Effect of hydrogen addition on combustion and emissions performance of a spark ignition gasoline engine at lean conditions. Int. J. Hydrogen Energy 34 (18): 7823-34, (2009). [CrossRef] [Google Scholar]
  17. T. D’Andrea, P.F. Henshaw, D.K. Ting. The addition of hydrogen to a gasoline-fuelled SI engine. Int. J. Hydrogen Energy 29 (14): 1541-52, (2004). [CrossRef] [Google Scholar]
  18. N. Iafrate, M. Matrat, J. M. Zaccardi. Numerical investigations on hydrogen-enhanced combustion in ultra-lean gasoline spark-ignition engines. Int. J. Engine Research 1-15, (2019). [Google Scholar]
  19. T. Tahtough, F. Halter, E. Samson, C. Mounmaim-Rousselle (2011). Effects of hydrogen addition under lean and diluited conditions on combustion characteristics and emissions in a spark ignition engine. Int. J. Eng. Research 12 (5): 466-483. [CrossRef] [Google Scholar]
  20. F. Bozza, A. Gimelli, S.S. Merola and B.M. Vaglieco. Validation of a Fractal Combustion through flame imaging. SAE Transaction 114 (3): 973-987, (2005). doi: 10.2307/44722057. [Google Scholar]
  21. F. Bozza, L. Teodosio, V. De Bellis, S. Fontanesi et al. A Refined 0D Turbulence Model to predict Tumble and Turbulence in SI Engines. SAE Int. J. Engines 12: 15-30, (2019). doi: 10.4271/03-12-01-0002. [CrossRef] [Google Scholar]
  22. L. Marchitto, L. Teodosio, C. Tornatore, G. Valentino et al. Experimental and 1D Numerical Investigations on the Exhaust emissions of a Small Spark Ignition Engine considering the cylinder-by-cylinder variability. SAE Technical Paper 2020-01-0578, (2020). [Google Scholar]
  23. T. Cerri, G. D’Errico, G. Montenegro, A. Onorati et al. A Novel 1D Co-Simulation Framework for the prediction of Tailpipe Emissions under different IC engine operating conditions. SAE Technical Paper 2019-24-0147, (2019). [Google Scholar]
  24. J. Andrae. Comprehensive chemical kinetic modeling of toluene reference fuels oxidation. Fuel 107: 740-748, (2013). [CrossRef] [Google Scholar]
  25. F. Bozza, V. De Bellis, L. Teodosio and A. Gimelli. Numerical analysis of the transient operation of a turbocharged diesel engine including the compressor surge. Proc. of the Inst. of Mech. Eng., Part D. J. Aut. Eng. 227: 1503–17, (2013). [CrossRef] [Google Scholar]
  26. L. Teodosio, F. Bozza, D. Tufano, P. Giannattasio et al. Impact of the laminar flame speed correlation on the results of a quasi-dimensional combustion model for Sparkignition engine. Energy Procedia 148: 631-638, (2018). [CrossRef] [Google Scholar]
  27. R. Niu, X. Yu, Y. Du, H. Xie et al. Effect of hydrogen proportion on lean burn performance of a dual fuel SI engine using hydrogen direct-injection. Fuel 186: 792-799, (2016). [CrossRef] [Google Scholar]
  28. Technical Reports of Eagle project on the Pre-chamber SI engines, (2019). [Google Scholar]
  29. A. K. Agarwal, A. P. Singh, R. K. Maurya. Evolution, challenges and path forward for low temperature combustion engines. Progress in Energy and Combustion Science 61: 1-56, (2017). [CrossRef] [Google Scholar]
  30. M. Christensen, B. Johansson, P. Einewall. Homogeneous charge compression ignition (HCCI) using isooctane, ethanol and natural gas – A comparison with spark ignition operation. SAE Technical Paper 972874, (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.