Open Access
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 06015
Number of page(s) 12
Section Internal Combustion Engines
Published online 22 October 2020
  1. de Nola F. et al., “A Model-Based Computer Aided Calibration Methodology Enhancing Accuracy, Time and Experimental Effort Savings Through Regression Techniques and Neural Networks”, SAE Technical Paper # 2017-24-0054, doi: 10.4271/2017-24-0054. (2017). [Google Scholar]
  2. de Nola F. et al., “Reduction of the experimental effort in engine calibration by using neural networks and 1D engine simulation”, Energy Procedia, Volume 148, August 2018, Pages 344-351, doi: 10.1016/j.egypro.2018.08.087. (2018) [CrossRef] [Google Scholar]
  3. de Nola F. et al., “Volumetric efficiency estimation based on neural networks to reduce the experimental effort in engine base calibration”, Fuel, Volume 244, 15 May 2019, Pages 31-39, doi: 10.1016/j.fuel.2019.01.182. (2018) [CrossRef] [Google Scholar]
  4. de Nola F. et al., “Enhancing the accuracy of engine calibration through a computer aided calibration algorithm”, Energy Procedia, Volume 148, August 2018, Pages 916-923, doi: 10.1016/j.egypro.2018.08.094. (2018) [CrossRef] [Google Scholar]
  5. de Nola F. et al., “Definition of a Methodology Promoting the Use of 1D Thermo-Fluid Dynamic Analysis for the Reduction of the Experimental Effort in Engine Base Calibration”, SAE Paper 2019-24-0013, doi: 10.4271/2019-24-0013. (2019). [Google Scholar]
  6. Gimelli A. et al., “Preliminary Analysis of a Hydraulic Variable Valve Actuation Loss Model for the Control-Oriented Base Engine Calibration”, AIP Conference Proceedings, Volume 2191, 17 December 2019, doi: 10.1063/1.5138823. (2019) [Google Scholar]
  7. de Nola F. et al., “A control-oriented and physics-based model of the engine crank mechanism friction for the base calibration: Parametric analysis”, AIP Conference Proceedings, Volume 2191, 17 December 2019, Article number 020060, doi: 10.1063/1.5138793. (2019) [CrossRef] [Google Scholar]
  8. Brancati R. et al., “Crank Mechanism Friction Modeling for Control-Oriented Applications”, Mechanisms and Machine Science, Volume 91, 20 August 2020, doi: 10.1007/978-3-030-55807-9_81. (2020) [Google Scholar]
  9. Bozza F. et al., “Strategies for Improving Fuel Consumption at Part-Load in a Downsized Turbocharged SI Engine: a Comparative Study”, SAE Int. J. Engines 7(1):2014, doi:10.4271/2014-01-1064. (2014) [CrossRef] [Google Scholar]
  10. Poloni C. et al., “Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics”, Comput. Methods Appl. Mech. Engrg. 186 (2000) 403-420. [CrossRef] [Google Scholar]
  11. Gimelli A. et al., “Efficiency and Cost Optimization of a Regenerative Organic Rankine Cycle Power Plant through the Multi-Objective Approach”, Applied Thermal Engineering, 114, 601–610, doi: 10.1016/j.applthermaleng.2016.12.009. (2017) [CrossRef] [Google Scholar]
  12. Gimelli A. et al., “Optimal Design of Modular Cogeneration Plants for Hospital Facilities and Robustness Evaluation of the Results”, Energy Conversion and Management, 134, 20–31, doi: 10.1016/j.enconman.2016.12.027. (2017). [CrossRef] [Google Scholar]
  13. Gimelli A. et al., “The Key Role of the Vector Optimization Algorithm and Robust Design Approach for the Design of Polygeneration Systems”, Energies 2018, 11(4), 821; doi:10.3390/en11040821. (2018) [CrossRef] [Google Scholar]
  14. Chen S.K. et al., “Development of a Single Cylinder Compression Ignition Research Engine”, SAE Paper 650733. (1965) [Google Scholar]
  15. Gimelli A. et al., Study of a New Mechanical VVA System. Part I: Valve Train Design and Friction Modeling, International Journal of Research Engines, SEP 2015, Volume: 16 Issue: 6 Pages: 750-761. DOI: 10.1177/1468087414548773. [Google Scholar]
  16. Gimelli A. et al., Study of a New Mechanical VVA System. Part II: Estimation of the Actual Fuel Consumption Improvement through 1D Fluid Dynamic Analysis and Valve Train Friction Estimation, International Journal of Engine Research, SEP 2015, Volume: 16, Issue: 6, Pages: 762-772. DOI: 10.1177/1468087414548773. [Google Scholar]
  17. Augugliaro G. et al., “A Simulation Model for a High Pressure Injection Systems”, SAE paper 971595, (1997). [CrossRef] [Google Scholar]
  18. Catania A. E. et al., “Development and Application of a Complete Multijet CommonRail Injection-System Mathematical Model for Hydrodynamic Analysis and Diagnostics”, SAE Paper 780232. [Google Scholar]
  19. Wong P. K. et al., “Modeling and Simulation of a Dual-Mode Electrohydraulic Fully Variable Valve Train for Four-Stroke Engines”, International Journal of Automotive Technology, Vol. 9, No. 5, pp. 509−521, doi: 10.1007/s12239−008−0061−2. (2008) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.