Open Access
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 06017
Number of page(s) 15
Section Internal Combustion Engines
Published online 22 October 2020
  1. [Google Scholar]
  2. ExxonMobil (2019) Outlook For Energy: A Perspective to 2040 [Google Scholar]
  3. OECD/IEA 2017 The Future of Trucks. Implications for energy and the environment, November 2017 [Google Scholar]
  4. N. Hooftman, M. Messagie, J. Van Mierlo, T. Coosemans, A review of the European passenger car regulations – Real driving emissions vs local air quality, (2018) Renewable and Sustainable Energy Reviews, 86, pp. 1-21. [CrossRef] [Google Scholar]
  5. Continental Automotive – Worldwide Emission Standards and Related Regulations. Passenger Cars / Light and Medium Duty Vehicles, May 2019 [Google Scholar]
  6. A. Boretti, The Future of the Internal Combustion Engine After “Diesel-Gate”, SAE Technical Paper 2017-28-1933, (2017), doi:10.4271/2017-28-1933. [Google Scholar]
  7. S. Feng, H. An, H. Li, Y. Qi, Z. Wang, Q. Guan, Y. Li, Y. Qi, The technology convergence of electric vehicles: Exploring promising and potential technology convergence relationships and topics, (2020) Journal of Cleaner Production, 260, art. no. 120992, DOI: 10.1016/j.jclepro.2020.120992 [Google Scholar]
  8. J. Krause, C. Thiel, D. Tsokolis, Z. Samaras, C. Rota, A. Ward, P. Prenninger, T. Coosemans, S. Neugebauer, W. Verhoeve, EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios (2020) Energy Policy, 138, art. no. 111224, DOI: 10.1016/j.enpol.2019.111224 [CrossRef] [Google Scholar]
  9. C. Villante, M. Anatone, A. De Vita, “On WTW and TTW Specific Energy Consumption and CO2 Emissions of Conventional, Series Hybrid and Fully Electric Buses,” SAE Int. J. Alt. Power. 7(1):5-26, 2018 [CrossRef] [Google Scholar]
  10. T. Arthanari, A. Kumar, V. Patil, D. Autade, et al., “Simplified Approach to Model a HEV/PHEV/Battery Vehicle Cooling, System in 1D and Validating using DFSS Methodology,” SAE Technical Paper 2020-01-1386, (2020) doi:10.4271/2020-011386. [Google Scholar]
  11. T. Fletcher, N. Kalantzis, A. Ahmedov, R. Yuan, et al., “Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles, (HEVs),” SAE Technical Paper 2020-010151 (2020), doi:10.4271/2020-01-0151. [Google Scholar]
  12. R. Cipollone, D. Di Battista, A. Gualtieri, A novel engine cooling system with two circuits operating at different temperatures, (2013) Energy Conversion and Management, 75, pp. 581-592. [CrossRef] [Google Scholar]
  13. ERTRAC Working Group: Energy and Environment, Future Light and Heavy Duty ICE Powertrain Technologies, 09.06.2016 [Google Scholar]
  14. R. Cipollone, D. Di Battista, A. Perosino, F. Bettoja, Waste Heat Recovery by an Organic Rankine Cycle for Heavy Duty Vehicles, (2016) SAE Technical Papers, DOI: 10.4271/2016-01-0234. [Google Scholar]
  15. A. Omar, M. Saghafifar, K. Mohammadi, A. Alashkar, M. Gadalla, A review of unconventional bottoming cycles for waste heat recovery: Part II – Applications, (2019) En. Conv. and Manag., 180, pp. 559-583. [CrossRef] [Google Scholar]
  16. D. Di Battista, M. Di Bartolomeo, C. Villante, R. Cipollone, On the limiting factors of the waste heat recovery via ORC-based power units for on-the-road transportation sector, (2018) Energy Conversion and Management, 155, pp. 68-77. DOI: 10.1016/j.enconman.2017.10.091 [CrossRef] [Google Scholar]
  17. K. Yang, M. Bargende, M. Grill, Evaluation of Engine-Related Restrictions for the Global Efficiency by Using a Rankine Cycle-Based Waste Heat Recovery System on Heavy Duty Truck by Means of 1D-Simulation, (2018) SAE Technical Papers, 2018 April, DOI: 10.4271/2018-01-1451. [Google Scholar]
  18. R. Cipollone, D. Di Battista, A. Gualtieri, A., Energy recovery from the turbocharging system of internal combustion engines, (2012) ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2012, 2, pp. 477-487. DOI: 10.1115/ESDA2012-82302 [CrossRef] [Google Scholar]
  19. D. Di Battista, R. Carapellucci, R. Cipollone, Integrated evaluation of Inverted Brayton cycle recovery unit bottomed to a turbocharged diesel engine, (2020) Applied Thermal Engineering, 175, art. no. 115353 [CrossRef] [Google Scholar]
  20. K. Yang, M. Grill, M. Bargende, A Simulation Study of Optimal Integration of a Rankine Cycle Based Waste Heat Recovery System into the Cooling System of a Long-Haul Heavy Duty Truck, (2018) SAE Technical Papers, 2018-September, DOI: 10.4271/2018-01-1779 [Google Scholar]
  21. C. Mansour, W. Bou Nader, C. Dumand, M. Nemer, Waste heat recovery from engine coolant on mild hybrid vehicle using organic Rankine cycle, (2019) Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233 (10), pp. 2502-2517. DOI: 10.1177/0954407018797819 [CrossRef] [Google Scholar]
  22. M. Kober, The High Potential for Waste Heat Recovery in Hybrid Vehicles: A Comparison Between the Potential in Conventional and Hybrid Powertrains, (2020) Journal of Electronic Materials. [Google Scholar]
  23. M. Villani, L. Tribioli, Comparison of different layouts for the integration of an organic Rankine cycle unit in electrified powertrains of heavy duty Diesel trucks, (2019) Energy Conversion and Management, 187, pp. 248-261. DOI: 10.1016/j.enconman.2019.02.078 [CrossRef] [Google Scholar]
  24. D. Di Battista, M. Di Bartolomeo, R. Cipollone, Flow and thermal management of engine intake air for fuel and emissions saving, (2018) Energy Conversion and Management, 173, pp. 46-55. [CrossRef] [Google Scholar]
  25. J. Radzicki, T. Asano, Water-cooled CAC module development Thermal strain analysis (2018) FISITA World Automotive Congress 2018, 2018-October [Google Scholar]
  26. D. Di Battista, R. Cipollone, High efficiency air conditioning model based analysis for the automotive sector, (2016) International Journal of Refrigeration, 64, pp. 108-122, DOI: 10.1016/j.ijrefrig.2015.12.014 [CrossRef] [Google Scholar]
  27. S. Banakar, D. Limperich, R. Asapu, V. Panneerselvam, M. Singh, Performance evaluation of automotive HVAC system with the use of liquid cooled condenser, (2014) SAE Technical Papers, 1 [Google Scholar]
  28. W. Ferraris, F. Di Sciullo, C. Malvicino, F. Vestrelli, F. Beltramelli, G. Gotta, Single Layer Cooling Module for A-B Segment Vehicles, (2015) SAE Technical Papers, 2015-April (April), DOI: 10.4271/2015-01-1692 [Google Scholar]
  29. R. Cipollone, D. Di Battista, A. Gualtieri, Head and block split cooling in ICE, (2012) IFAC Proceedings Volumes (IFAC-PapersOnline), 45 (30), pp. 400-407. [CrossRef] [Google Scholar]
  30. Y. Wang, Q. Gao, T. Zhang, G. Wang, Z. Jiang, Y. Li, Advances in integrated vehicle thermal management and numerical simulation, (2017) Energies, 10 (10), art. no. 1636, DOI: 10.3390/en10101636 [Google Scholar]
  31. T. Castiglione, P. Morrone, L. Falbo, D. Perrone, S. Bova, Application of a ModelBased Controller for Improving Internal Combustion Engines Fuel Economy. Energies 2020, 13, 1148. [CrossRef] [Google Scholar]
  32. L. Marchitto, C. Tornatore, G. Valentino, L. Teodosio, Impact of Cooled EGR on Performance and Emissions of a Turbocharged Spark-Ignition Engine under Low-Full Load Conditions. SAE Tech. Paper 2019-24-0021 [Google Scholar]
  33. T. Castiglione, P. Morrone, S. Bova, A Model Predictive Approach to Avoid AfterBoiling in ICE. SAE Technical Paper 2018-01-0779 2018. [Google Scholar]
  34. D. Perrone, L. Falbo, T. Castiglione, S. Bova, Knock Mitigation by Means of Coolant Control, SAE Technical Paper 2019-24-0183, (20199 [Google Scholar]
  35. D. Di Battista, D. Vittorini, F. Fatigati, R. Cipollone, Technical review of opportunities to reduce the warm-up time of lubricant oil in a light-duty diesel engine, (2019) AIP Conference Proceedings, 2191, art. no. 020065 [CrossRef] [Google Scholar]
  36. R. Cipollone, D. Di Battista, M. Mauriello, Effects of oil warm up acceleration on the fuel consumption of reciprocating internal combustion engines, (2015) Energy Procedia, 82, pp. 1-8. [CrossRef] [Google Scholar]
  37. O.P. Taylor, R. Pearson, R. Stone, Reduction of CO2 Emissions through Lubricant Thermal Management during the Warm Up of Passenger Car Engines, (2016) SAE Technical Papers, DOI: 10.4271/2016-01-0892 [Google Scholar]
  38. D. Di Battista, R. Cipollone, F. Fatigati, Engine oil Thermal Management: Oil Sump Volume Modification and Heating by Exhaust Heat during ICE Warm Up, (2018) SAE Technical Papers, 2018-April [Google Scholar]
  39. D. Vittorini, D. Di Battista, R. Cipollone, Engine oil warm-up through heat recovery on exhaust gases – Emissions reduction assessment during homologation cycles, (2018) Thermal Science and Engineering Progress, 5, pp. 412-421. DOI: 10.1016/j.tsep.2018.01.010 [CrossRef] [Google Scholar]
  40. S. Mancò, N. Nervegna, M. Rundo, G. Armenio, Displacement vs flow control in IC engines lubricating pumps, (2004) SAE Technical Papers, DOI: 10.4271/2004-011602 [Google Scholar]
  41. E. Frosina, A. Senatore, D. Buono, L. Santato, Analysis and simulation of an oil lubrication pump for internal combustion engines, (2015) Journal of Fluids Engineering, Transactions of the ASME, 137 (5), art. no. 051102 [CrossRef] [Google Scholar]
  42. S. Wilson, H. Yoon, Y. Sun, J.H. Lee, A Comparative Study on Engine Thermal Management System, SAE Technical, Paper 2020-01-0946, (2020) doi:10.4271/202001-0946. [Google Scholar]
  43. A.R. Akash, A. Pattamatta, S.K. Das, Experimental study of the thermohydraulic performance of water/ethylene glycol–based graphite nanocoolant in vehicle radiators, (2019) Journal of Enhanced Heat Transfer, 26 (4), pp. 345-363. DOI: 10.1615/JEnhHeatTransf.2019028304 [CrossRef] [Google Scholar]
  44. R. Cipollone, D. Di Battista, G. Contaldi, S. Murgia, M. Mauriello, Development of a sliding vane rotary pump for engine cooling, (2015) Energy Procedia, 81, pp. 775-783. DOI: 10.1016/j.egypro.2015.12.083 [CrossRef] [Google Scholar]
  45. R. Cipollone, G. Bianchi, D. Di Battista, F. Fatigati, Fuel economy benefits of a new engine cooling pump based on sliding vane technology with variable eccentricity, (2015) Energy Procedia, 82, pp. 265-272 [CrossRef] [Google Scholar]
  46. J. Sureshkumar, R. Sivanantham, A.M.S. Thangappapillai, G. Murali, M. Shariq, Overview on Design of Electric Coolant Pump for Automotive Application, (2019) SAE Technical Papers, 2019-January (January) [Google Scholar]
  47. Li X., Evangelou S.A., Lot R. Integrated management of powertrain and engine cooling system for parallel hybrid electric vehicles, (2019) 2018 IEEE Vehicle Power and Propulsion Conference, VPPC 2018 Proceedings, art. no. 8604994, DOI: 10.1109/VPPC.2018.8604994 [Google Scholar]
  48. Di Bartolomeo M., Fatigati F., Di Battista D., Cipollone R., A New Approach for Designing and Testing Engine Coolant Pump Electrically Actuated, (2020) SAE Technical Papers, 2020-April (April) [Google Scholar]
  49. R. Cipollone, M. Borasso, D. Di Battista, M. Benincasa, A Dynamic Test Bench for the Cooling Water Pump Characterization under Real Operating Conditions, (2018) SAE Technical Papers, 2018-May (May). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.