Open Access
Issue
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 06019
Number of page(s) 10
Section Internal Combustion Engines
DOI https://doi.org/10.1051/e3sconf/202019706019
Published online 22 October 2020
  1. T. Johnson and A. Joshi. “Review of Vehicle Engine Efficiency and Emissions”, SAE Int. J. Engines 11, 2018-01–0329 (2018) [Google Scholar]
  2. D. Takahashi et al. “Combustion Development to Realize High Thermal Efficiency Engines”, SAE Int. J. Engines 9, 2016-01–0693 (2016) [Google Scholar]
  3. J. Zembi et al. “CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions”, Energies 12, 3409 (2019) [CrossRef] [Google Scholar]
  4. M. Battistoni et al. “Assessment of Port Water Injection Strategies to Control Knock in a GDI Engine through Multi-Cycle CFD Simulations”, in SAE Tech. Pap. (2017). doi:10.4271/2017-24-0034 [Google Scholar]
  5. K. Nakata et al. “Engine Technologies for Achieving 45% Thermal Efficiency of S.I. Engine”, SAE Int. J. Engines 9, 2015-01–1896 (2015) [Google Scholar]
  6. D. Jung and N. Iida. “An investigation of multiple spark discharge using multi-coil ignition system for improving thermal efficiency of lean SI engine operation”, Appl. Energy 212, 322–332 (2018) [CrossRef] [Google Scholar]
  7. D. Breden et al. “High-Fidelity Numerical Modeling of Spark Plug Erosion”, SAE Tech. Pap. Ser. 1, 1–12 (2019) [Google Scholar]
  8. V. Cruccolini et al. “Lean combustion analysis using a corona discharge igniter in an optical engine fueled with methane and a hydrogen-methane blend”, Fuel 259, 116290 (2020) [CrossRef] [Google Scholar]
  9. G. Kalghatgi. “Is it really the end of internal combustion engines and petroleum in transport?”, Appl. Energy 225, 965–974 (2018) [CrossRef] [Google Scholar]
  10. J. Benajes et al. “Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines”, Appl. Energy 248, 576–588 (2019) [CrossRef] [Google Scholar]
  11. Y. Ju and W. Sun. “Plasma assisted combustion: Dynamics and chemistry”, Prog. Energy Combust. Sci. 48, 21–83 (2015) [CrossRef] [Google Scholar]
  12. R. Scarcelli et al. “Modeling non-equilibrium discharge and validating transient plasma characteristics at above-atmospheric pressure”, Plasma Sources Sci. Technol. 27, 124006 (2018) [CrossRef] [Google Scholar]
  13. Y. Ikeda et al. “Development of Innovative Microwave Plasma Ignition System with Compact Microwave Discharge Igniter”, in SAE Tech. Pap. (2015). doi:10.4271/2015-242434 [Google Scholar]
  14. C. A. Idicheria et al. “An Advanced Ignition System for High Efficiency Engines”, in Ignition Syst. Gasol. Engines 4th Int. Conf. December 6 7, 2018, Berlin, Ger. 40–54 (2018). doi:10.5445/IR/1000088317 [Google Scholar]
  15. V. Cruccolini et al. “Comparative Analysis between a Barrier Discharge Igniter and a Streamer-Type Radio-Frequency Corona Igniter in an Optically Accessible Engine in Lean Operating Conditions”, in SAE Tech. Pap. (2020). doi:10.4271/2020-01-0276 [Google Scholar]
  16. D. I. Pineda et al. “Application of Corona Discharge Ignition in a Boosted Direct-Injection Single Cylinder Gasoline Engine: Effects on Combustion Phasing, Fuel Consumption, and Emissions”, SAE Int. J. Engines 9, 2016-01–9045 (2016) [Google Scholar]
  17. R. Scarcelli et al. “Numerical simulation of a nano-pulsed high-voltage discharge and impact on low-temperature plasma igni-tion processes for automotive applications”, in Ignition Syst. Gasol. Engines 4th Int. Conf. (2018). doi:10.5445/IR/1000088603 [Google Scholar]
  18. G. Discepoli et al. “Experimental characterisation of the thermal energy released by a RadioFrequency Corona Igniter in nitrogen and air”, Appl. Energy 263, 114617 (2020) [CrossRef] [Google Scholar]
  19. G. Discepoli et al. “Experimental assessment of spark and corona igniters energy release”, Energy Procedia 148, 1262–1269 (2018) [CrossRef] [Google Scholar]
  20. J. Burrows and K. Mixell. “Analytical and Experimental Optimization of the Advanced Corona Ignition System”, in Ignition Syst. Gasol. Engines 267–292 (Springer International Publishing, 2016). doi:10.1007/978-3-319-45504-4_17 [Google Scholar]
  21. B. M. Wolk and I. Ekoto. “Calorimetry and Imaging of Plasma Produced by a Pulsed Nanosecond Discharge Igniter in EGR Gases at Engine-Relevant Densities”, SAE Int. J. Engines 10, 2017-01–0674 (2017) [Google Scholar]
  22. A. Cimarello et al. “Combustion Behavior of an RF Corona Ignition System with Different Control Strategies”, in SAE Tech. Pap. vols 2018-April 1–19 (2018). [Google Scholar]
  23. V. Cruccolini et al. “An Optical Method to Characterize Streamer Variability and Streamerto-Flame Transition for Radio-Frequency Corona Discharges”, Appl. Sci. 10, 2275 (2020) [CrossRef] [Google Scholar]
  24. H. Toyota et al. “Gaseous electrical discharge characteristics in air and nitrogen at cryogenic temperature”, IEEE Trans. Dielectr. Electr. Insul. 9, 891–898 (2002) [CrossRef] [Google Scholar]
  25. A. Cimarello et al. “Analysis of RF Corona Ignition in Lean Operating Conditions Using an Optical Access Engine”, in SAE Tech. Pap. (2017). doi:10.4271/2017-01-0673 [Google Scholar]
  26. T. Hoder et al. “Sub-nanosecond delays of light emitted by streamer in atmospheric pressure air: Analysis of N 2 ( C3Πu) and N2+( B2Σu+) emissions and fundamental streamer structure”, J. Appl. Phys. 117, 073302 (2015) [CrossRef] [Google Scholar]
  27. F. Ricci et al. “Experimental and Numerical Investigations of the Early Flame Development Produced by a Corona Igniter”, in SAE Tech. Pap. Ser. vol. 1 (2019). [Google Scholar]
  28. Z. Abidin and C. Chadwell. “Parametric Study and Secondary Circuit Model Calibration Using Spark Calorimeter Testing”, in SAE Tech. Pap. (2015). doi:10.4271/2015-01-0778 [Google Scholar]
  29. N. Y. Babaeva and G. V. Naidis. “On streamer dynamics in dense media”, J. Electrostat. 53, 123–133 (2001) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.