Open Access
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 06023
Number of page(s) 14
Section Internal Combustion Engines
Published online 22 October 2020
  1. United Nations, Kyoto protocol to the united nations framework convention on climate change, (1998). [Google Scholar]
  2. Eurostat, Complete energy balances, (2020). nrg_bal_c (accessed April 30, 2020). [Google Scholar]
  3. T. Dyr, P. Misiurski, K. Ziółkowska, Costs and benefits of using buses fuelled by natural gas in public transport, J. Clean. Prod. 225 (2019) 1134–1146. [CrossRef] [Google Scholar]
  4. T.L.F. Brito, E. Moutinho dos Santos, R. Galbieri, H.K. de M. Costa, Qualitative Comparative Analysis of cities that introduced compressed natural gas to their urban bus fleet, Renew. Sustain. Energy Rev. 71 (2017) 502–508. [CrossRef] [Google Scholar]
  5. J. Heywood, Internal combustion engine fundamentals, Mc Graw-Hill, New York, 1989. [Google Scholar]
  6. M. Stuhldreher, J. Kargul, D. Barba, J. McDonald, S. Bohac, P. Dekraker, A. Moskalik, Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines, SAE Int. J. Engines. 11 (2018) 1273–1305. [CrossRef] [PubMed] [Google Scholar]
  7. S. Lion, C.N. Michos, I. Vlaskos, R. Taccani, A thermodynamic feasibility study of an Organic Rankine Cycle (ORC) for heavy-duty diesel engine waste heat recovery in off-highway applications, Int. J. Energy Environ. Eng. 8 (2017) 81–98. [CrossRef] [Google Scholar]
  8. S. Lion, C.N. Michos, I. Vlaskos, C. Rouaud, R. Taccani, A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications, Renew. Sustain. Energy Rev. 79 (2017) 691–708. [CrossRef] [Google Scholar]
  9. Y. Dai, J. Wang, L. Gao, Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery, Energy Convers. Manag. 50 (2009) 576–582. [CrossRef] [Google Scholar]
  10. B. Xu, D. Rathod, A. Yebi, Z. Filipi, A comparative analysis of real-time power optimization for organic Rankine cycle waste heat recovery systems, Appl. Therm. Eng. 164 (2020) 114442. [CrossRef] [Google Scholar]
  11. N. Nazari, P. Heidarnejad, S. Porkhial, Multi-objective optimization of a combined steam-organic Rankine cycle based on exergy and exergo-economic analysis for waste heat recovery application, Energy Convers. Manag. 127 (2016) 366–379. [CrossRef] [Google Scholar]
  12. G. Valencia, A. Fontalvo, Y. Cárdenas, J. Duarte, C. Isaza, Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC, Energies. 12 (2019). [Google Scholar]
  13. C.N. Michos, S. Lion, I. Vlaskos, R. Taccani, Analysis of the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications, Energy Convers. Manag. 132 (2017) 347–360. [CrossRef] [Google Scholar]
  14. H. Chen, D.Y. Goswami, E.K. Stefanakos, A review of thermodynamic cycles and working fluids for the conversion of low-grade heat, Renew. Sustain. Energy Rev. 14 (2010) 3059–3067. [Google Scholar]
  15. V. Maizza, A. Maizza, Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems, Appl. Therm. Eng. 21 (2001) 381–390. [CrossRef] [Google Scholar]
  16. NFPA,, (n.d.). (accessed August 28, 2019). [Google Scholar]
  17. EPA, Greenhouse Gas Emissions, (n.d.).] (accessed September 30, 2019). [Google Scholar]
  18. W.K. Dimitrios T. Hountalas, Georgios C. Mavropoulos, Christos Katsanos, Improvement of bottoming cycle efficiency and heat rejection for HD truck applications by utilization of EGR and CAC heat, Energy Convers. Manag. 53 (2012) 19–32. [CrossRef] [Google Scholar]
  19. Y.J. Baik, M. Kim, K.C. Chang, Y.S. Lee, H.K. Yoon, Power enhancement potential of a mixture transcritical cycle for a low-temperature geothermal power generation, Energy. 47 (2012) 70–76. [CrossRef] [Google Scholar]
  20. M. Chys, M. van den Broek, B. Vanslambrouck, M. De Paepe, Potential of zeotropic mixtures as working fluids in organic Rankine cycles, Energy. 44 (2012) 623–632. [CrossRef] [Google Scholar]
  21. R. Scaccabarozzi, M. Tavano, C.M. Invernizzi, E. Martelli, Thermodynamic Optimization of heat recovery ORCs for heavy duty Internal Combustion Engine: Pure fluids vs. zeotropic mixtures, Energy Procedia. 129 (2017) 168–175. [CrossRef] [Google Scholar]
  22. A. Mariani, B. Morrone, A. Unich, Numerical evaluation of internal combustion spark ignition engines performance fuelled with hydrogen – Natural gas blends, Int. J. Hydrogen Energy. 37 (2012) 2644–2654. [CrossRef] [Google Scholar]
  23. C. He, C. Liu, H. Gao, H. Xie, Y. Li, S. Wu, J. Xu, The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle, Energy. 38 (2012) 136–143. [CrossRef] [Google Scholar]
  24. J. Bao, L. Zhao, A review of working fluid and expander selections for organic Rankine cycle, Renew. Sustain. Energy Rev. 24 (2013) 325–342. [CrossRef] [Google Scholar]
  25. ASHRAE, Update on New Refrigerants Designations and Safety Classifications, (2015) 1–4. (accessed November 12, 2019). [Google Scholar]
  26. Y. Glavatskaya, P. Podevin, V. Lemort, O. Shonda, G. Descombes, Reciprocating expander for an exhaust heat recovery rankine cycle for a passenger car application, Energies. 5 (2012) 1751–1765. [CrossRef] [Google Scholar]
  27. R. Mastrullo, A.W. Mauro, R. Revellin, L. Viscito, Modeling and optimization of a shell and louvered fin mini-tubes heat exchanger in an ORC powered by an internal combustion engine, Energy Convers. Manag. 101 (2015) 697–712. [CrossRef] [Google Scholar]
  28. S. Declaye, S. Quoilin, L. Guillaume, V. Lemort, Experimental study on an opendrive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid, Energy. 55 (2013) 173–183. [CrossRef] [Google Scholar]
  29. C.O. Katsanos, D.T. Hountalas, E.G. Pariotis, Thermodynamic analysis of a Rankine cycle applied on a diesel truck engine using steam and organic medium, Energy Convers. Manag. 60 (2012) 68–76. [CrossRef] [Google Scholar]
  30. M. Leino, Process Simulation Unit Operation Models – Review of Open And Hsc Chemistry I / O Interfaces, Tampere University of Technology, 2016. [Google Scholar]
  31. DWSIM, (2015). (accessed November 12, 2019). [Google Scholar]
  32. I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop, Ind. Eng. Chem. Res. 53 (2014) 2498–2508. [CrossRef] [PubMed] [Google Scholar]
  33. J. Lin, A.J. Mahvi, T.S. Kunke, S. Garimella, Improving air-side heat transfer performance in air-cooled power plant condensers, Appl. Therm. Eng. 170 (2020) 114913. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.