Open Access
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 07001
Number of page(s) 12
Section Hydraulics and Pneumatics
Published online 22 October 2020
  1. J. Ivantysyn, M. Ivantysynova, Hydrostatic Pumps and Motors: Principles, Design, Performance, Modelling, Analysis, Control and Testing. Tech Books International (2003). [Google Scholar]
  2. B. Geist, W. Resh, Dynamic Modeling of a Variable Displacement Vane Pump Within an Engine Oil Circuit, Proceedings of the ASME 2011 Internal Combustion Engine Division Fall Technical Conference ICEF2011 October 2-5, 2011, Morgantown, West Virginia, USA. [Google Scholar]
  3. P. E. Sullivan, M. Sehmby, Internal Force Analysis of a Variable Displacement Vane Pump, SAE Technical Paper 2012-01-0409, 2012. [Google Scholar]
  4. M. Rundo, M. A. Pavanetto, Comprehensive Simulation Model of a High Pressure Variable Displacement Vane Pump for Industrial Applications, Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2018, August 26-29, 2018, Quebec City, Quebec, Canada. [Google Scholar]
  5. M. Rundo, G. Altare, Lumped Parameter and Three-Dimensional CFD Simulation of a Variable Displacement Vane Pump for Engine Lubrication, Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting FEDSM2017 July 30-August 3, 2017, Waikoloa, Hawaii, USA. [Google Scholar]
  6. F. Fornarelli, A. Lippolis, P. Oresta, A. Posa, Investigation of a pressure compensated vane pump, Proceeding of the 73rd Conference of the Italian Thermal Machines Engineering Association (ATI 2018), 12-14 September 2018, Pisa, Italy. [Google Scholar]
  7. E. Frosina, A. Senatore, D. Buono, K. A. Stelson, F. Wang, B. Mohanty, M. J. Gust, Vane pump power split transmission: three dimensional computational fluid dynamic modeling, Proceedings of the ASME/BATH 2015 Symposium on Fluid Power and Motion Control, FPMC2015, Chicago, Illinois, USA. [Google Scholar]
  8. E. Frosina, A. Senatore, D. Buono, K. A. Stelson, F. Wang, B. Gao, H., A ThreeDimensional CFD Methodology to Study Vane-Ring and Vane-Under-Vane Interactions of a Vane Pump Power Split Transmission, 9th FPNI Ph.D. Symposium on Fluid Power (FPNI2016), Florianópolis, Brazil. [Google Scholar]
  9. A.K. Singhal, M.M. Athavale, H.Y. Li, Y. Jiang, Mathematical basis and validation of the full cavitation model, Transactions of the ASME – Journal of Fluid Engineering, vol. 124, pp. 617-624, 2002. [Google Scholar]
  10. E. Frosina, G. Marinaro, A. Senatore, Experimental and Numerical Analysis of An Axial Piston Pump: A Comparison Between Lumped Parameter And 3D CFD Approaches, Proceedings of the ASME-JSME-KSME 2019, 8th Joint Fluids Engineering Conference AJKFluids 2019, July 28-August 1, 2019, San Francisco, CA, USA. [Google Scholar]
  11. E. Frosina, G. Marinaro, A. Senatore, M. Pavanetto, Effects of PCFV and PreCompression Groove on the Flow Ripple Reduction in Axial Piston Pumps, 2018 Global Fluid Power Society PhD Symposium, GFPS 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.