Open Access
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 08014
Number of page(s) 10
Section Environmental Sustainability and Renewable Energy Sources
Published online 22 October 2020
  1. J. S. Pereira, J. B. Ribeiro, R. Mendes, G. C. Vaz, J. C. André, “ORC based micro-cogeneration systems for residential application – A state of the art review and current challenges”, in Renewable and Sustainable Energy Reviews, 92, (2018), pp. 728-743. [CrossRef] [Google Scholar]
  2. D. Mikielewicz, J. Mikielewicz, “A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP”, in Applied Thermal Engineering, 30, (2010), pp. 2357-2362. [CrossRef] [Google Scholar]
  3. A. Franco, F. Bellina, “Methods for optimized design and management of CHP systems for district heating networks (DHN)”, Energy Conversion and Management, 172, (2018), pp. 21-31. [CrossRef] [Google Scholar]
  4. S. Lecompte, H. Huisseune, M. van den Broek, S. De Schampheleire, M. De Paepe, “Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system”, in Applied Energy, 111, (2013), pp. 871-881. [CrossRef] [Google Scholar]
  5. E. S. Barbieri, P. R. Spina, M. Venturini, “Analysis of innovative micro-CHP systems to meet household energy demands”, in Applied Energy, 97, (2012), pp. 723-733. [CrossRef] [Google Scholar]
  6. R. Bracco, D. Micheli, R. Petrella, M. Reini, R. Taccani, G. Toniato, “Micro-Organic Rankine Cycle systems for domestic cogeneration”, in Organic Rankine Cycle (ORC) Power Systems, (2017), pp. 637-668. [CrossRef] [Google Scholar]
  7. M. Petrollese, G. Cau, D. Cocco, “The Ottana solar facility: dispatchable power from small-scale CSP plants based on ORC systems”, in Renewable Energy, 147, (2020), pp. 2932-2943. [CrossRef] [Google Scholar]
  8. Y. He, D. Mei, W. Tao, W. Yang, H. Liu, “Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle”, in Applied Energy, 97, (2012), pp. 630-641. [CrossRef] [Google Scholar]
  9. J. Wang, Z. Yan, P. Zhao, Y. Dai, “Off-design performance analysis of a solar-powered organic Rankine cycle”, in Energy Conversion and Management, 80, (2014), pp. 150-157. [CrossRef] [Google Scholar]
  10. A. Refiei, R. Loni, G. Najafi, A.Z. Sahin, E. Bellos, “Effect of use of MWCNT/oil nanofluid on the performance of solar organic Rankine cycle”, in Energy Reports, 6, (2020), pp. 782-794. [CrossRef] [Google Scholar]
  11. M. Petrollese, D. Cocco, “Robust optimization for the preliminary design of solar organic Rankine cycle (ORC) systems”, in Energy Conversion and Management, 184, (2019), pp. 338-349. [CrossRef] [Google Scholar]
  12. CODE 2 Cogeneration Observatory and Dissemination Europe. Micro-CHP potential analysis European level report; (2014). [Google Scholar]
  13. V. R. Patil, V. I. Biradar, R. Shreyas, P. Garg, M. S. Orosz, N.C. Thirumalai, “Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage”, in Renewable Energy, 113, (2017), pp. 1250-1260. [CrossRef] [Google Scholar]
  14. M. Peters, T. S. Schmidt, D. Wiederkehr, M. Schneider, “Shedding light on solar technologies—A techno-economic assessment and its policy implications”, in Energy Policy, 39, (2011), pp. 6422-6439. [Google Scholar]
  15. J. M. Rodríguez, D. Sánchez, G. S. Martínez, E. Bennouna, B. Ikken, “Techno-economic assessment of thermal energy storage solutions for a 1MWe CSP-ORC power plant”, in Solar Energy, 140, (2016), pp. 206-218. [CrossRef] [Google Scholar]
  16. J. Freeman, K. Hellgardt, C. N. Markides, “Working fluid selection and electrical performance optimisation of a domestic solarORC combined heat and power system for year-round operation in the UK”, in Applied Energy, 186, (2017), pp. 291-303. [CrossRef] [Google Scholar]
  17. S. Quoilin, M. Orosz, H. Hemond, V. Lemort, “Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation”, in Solar Energy, 85, (2011), pp. 955-966. [CrossRef] [Google Scholar]
  18. X.D. Wang, L. Zhao, J.L. Wang, W.Z. Zhang, X.Z. Zhao, W. Wu, “Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa”, in Solar Energy, 84, (2010), pp. 353-364. [CrossRef] [Google Scholar]
  19. M. Santos, J. André, E. Costa, R. Mendes, J. Ribeiro, “Design strategy for component and working fluid selection in a domestic micro-CHP ORC boiler”, in Applied Thermal Engineering, 169, (2020). [Google Scholar]
  20. J. Lizana, C. Bordin, T. Rajabloo, “Integration of solar latent heat storage towards optimal small-scale combined heat and power generation by Organic Rankine Cycle”, in Journal of Energy Storage, 29, (2020). [Google Scholar]
  21. K. Couvreur, W. Beyne, M. De Paepe, S. Lecompte, “Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry”, in Energy, 200, (2020). [Google Scholar]
  22. D. Vittorini, A. Antonini, R. Cipollone, R. Carapellucci, C. Villante, “Solar Thermal-Based ORC Power Plant for Micro Cogeneration – Performance Analysis and Control Strategy”, in Energy Procedia, 148, (2018). [Google Scholar]
  23. B. Nie, Z. Du, B. Zou, Y. Li, Y. Ding, “Performance enhancement of a phase-change-material based thermal energy storage device for air-conditioning applications”, in Energy and Buildings, 214, (2020). [Google Scholar]
  24. C. Prieto, L. F. Cabeza, “Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance”, in Applied Energy, 254, (2019). [Google Scholar]
  25. B. Zhao, M. Cheng, C. Liu, Z. Dai, “System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power”, in Applied Energy, 226, (2018). [CrossRef] [Google Scholar]
  26. X. Li, E. Xu, S. Song, X. Wang, G. Yuan, “Dynamic simulation of two-tank indirect thermal energy storage system with molten salt, Renewable Energy”, 113, (2017), pp. 1311-1319. [CrossRef] [Google Scholar]
  27. W. Wang, S. Guo, H. Li, J. Yan, J. Zhao, X. Li, J. Ding, “Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)”, in Applied Energy, 119, (2014). [Google Scholar]
  28. J. Xu, C. Yu, “Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles”, in Energy, 74, (2014), pp. 719-733. [CrossRef] [Google Scholar]
  29. G. Qiu, “Selection of working fluids for micro-CHP systems with ORC, Renewable Energy”, 48, (2012), pp. 565-570. [CrossRef] [Google Scholar]
  30. D. Vittorini, R. Cipollone, R. Carapellucci, “Enhanced heat exchanger layout for optimum energy performance in solar thermal ORC-based unit”, in AIP Conference Proceedings, 2191, (2019). [Google Scholar]
  31. M. Imran, M. Usman, B. Park, D. Lee, “Volumetric expanders for low grade heat and waste heat recovery applications”, in Renewable and Sustainable Energy Reviews, 57, (2016), pp. 1090-1109. [CrossRef] [Google Scholar]
  32. P. Song, M. Wei, L. Shi, S. N. Danish, C. Ma, “A review of scroll expanders for organic Rankine cycle systems”, in Applied Thermal Engineering, 75, (2015), pp. 54-64. [CrossRef] [Google Scholar]
  33. F. Fatigati, M. Di Bartolomeo, D. Di Battista, R. Cipollone, “A dual-intake-port technology as a design option for a Sliding Vane Rotary Expander of small-scale ORC-based power units”, in Energy Conversion and Management, 209, (2020). [Google Scholar]
  34. D. Vittorini, R. Cipollone, R. Carapellucci, “Enhanced performances of ORC-based units for low grade waste heat recovery via evaporator layout optimization”, in Energy Conversion and Management, 197, (2019). [Google Scholar]
  35. M. Wang, Y. Chen, Q. Liu, Z. Yuanyuan, “Thermodynamic and thermo-economic analysis of dual-pressure and single pressure evaporation organic Rankine cycles”, in Energy Conversion and Management, 177, (2018), pp. 718-736. [CrossRef] [Google Scholar]
  36. T. Li, Z. Zhang, J. Lu, J. Yang, Y. Hu, “Two-stage evaporation strategy to improve system performance for organic Rankine cycle”, in Applied Energy, 150, (2015), pp. 323-334. [CrossRef] [Google Scholar]
  37. F. Fatigati, M. Di Bartolomeo, D. Di Battista, R. Cipollone, “Experimental characterization of a hermetic scroll expander operating in an ORC-based power unit bottoming an internal combustion engine”, in AIP Conference Proceedings 2191, (2019). [Google Scholar]
  38. M. Hamed, A. Fellah, A. Brahim, “Parametric sensitivity studies on the performance of a flat plate solar collector in transient behavior”, in Energy Conversion and Management, 78, (2014), pp. 938-947. [CrossRef] [Google Scholar]
  39. S. Bouadila, S. Kooli, M. Lazaar, S. Skouri, A. Farhat, “Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use”, in Applied Energy, 110, (2013), pp. 267-275. [CrossRef] [Google Scholar]
  40. M. Carmona, M. Palacio, “Thermal modelling of a flat plate solar collector with latent heat storage validated with experimental data in outdoor conditions”, in Solar Energy, 177, (2019), pp. 620-633. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.