Open Access
Issue
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 10009
Number of page(s) 11
Section Heat Transfer and Fluid Dynamics
DOI https://doi.org/10.1051/e3sconf/202019710009
Published online 22 October 2020
  1. UNI EN 1992-1-2 Eurocode 2: design of concrete structures. Part 1–2: General rules structural fire design. Commission of European Communities, Brussels, Belgium The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC (2004) [Google Scholar]
  2. ASTM E119 Standard test methods for determining effects of large hydrocarbon pool fires on structural members and assemblies. American Society for Testing and Materials, West Conshohocken, PA (2008) [Google Scholar]
  3. A. H. Buchanan, “Structural Design for Fire Safety, Second Edition”, John Wiley & Sons (2016) [CrossRef] [Google Scholar]
  4. J. Beitel, N. Iwankiw, “Historical survey of multi-story building collapses due to fire”, Fire Prot. Eng. pg. 42–48 (2005) [Google Scholar]
  5. A. Tovey, R. Crook, “Experience of fires in concrete structures” Vol 20. Detroit: evaluation and repair of the damage to concrete, Special Publication SP 92, American Concrete Institute (1986) [Google Scholar]
  6. A. Benedetti, E. Mangoni, “Damage Assessment in Actual Fire Situations by Means of Non-Destructive Techniques and Concrete Tests”, 2005, 2nd Workshop “Fire Design of Concrete Structures: What now? What next?”. Fib. T.G. 4.3. Published by Starrylink (Brescia), Milano, Italy, pg. 231-239 (2004) [Google Scholar]
  7. P. Cavalletti, C. Pisoni “Modelli di calcolo per la valutazione degli effetti di incendio su elementi strutturali di comune impiego in edilizia”, rapporto interno DINE EGR/20 (1992) [Google Scholar]
  8. A. Agrawal, V.K.R. Kodur, “A Novel Experimental Approach for Evaluating Residual Capacity of Fire Damaged Concrete Members”, Fire Technol. 56, pg. 715–735 (2020) [CrossRef] [Google Scholar]
  9. M.R. Khan, R. Royles, “Post Heat Exposure Behaviour of Reinforced Concrete Beams”, Mag. of Conc. Res., vol 38 n. 135 (1986) [Google Scholar]
  10. R. Felicetti, “The drilling Resistance test for the Assessment of the Thermal Damage in concrete”, Proc. Of the Workshop “Fire Design of Concrete Structures: What now? What next?”. Fib. T.G. 4.3. Starrylink (Brescia), Milano, Italy, pg. 231-239 (2004) [Google Scholar]
  11. A. K. Pandey, M. Biswas, “Damage Detection on Structures Using Changes in Flexibility”, Jour. of Sound and Vib., vol 169, Issue 1, pg. 3-17 (1994) [CrossRef] [Google Scholar]
  12. http://www.vigilfuoco.it/aspx/notizia.aspx?codnews=62708 access date 30/05/2020 [Google Scholar]
  13. https://genova.repubblica.it/cronaca/2020/01/05/news/_ponte_nel_cantiere_violata_la_sicurezza_scatta_l_inchiesta-244976001/ access date 30/05/2020 [Google Scholar]
  14. https://www.comsol.eu/release/5.3 COMSOL software version 5.3 access date 30/05/2020 [Google Scholar]
  15. UNI EN 1991-1-2: Eurocode 1: Actions on structures Part 1-2: General actions Actions on structures exposed to fire. The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC (2002) [Google Scholar]
  16. A.M. Neville, “Properties of concrete – 4th edition”, Pearson Prentice Hall (2006) [Google Scholar]
  17. W. Zi, Z. Yu, “Durability evaluation of post-fire concrete structure based on carbonation,” Int. Conf. on Cons. Electr., Comm. and Net. (CECNet), XianNing, pp. 1175-1177 (2011) [Google Scholar]
  18. M. Iuorio, L. Pascoli, “Comportamento al fuoco del calcestruzzo”, In Concreto September ATECAP, (2012) [Google Scholar]
  19. V. Babrauskas, D. Drysdale, S.J. Grayson, U. Schneider, “Repairability of Fire Damaged Structures”, Fire saf. Jour., vol 16, pg. 251-338 (1990) [CrossRef] [Google Scholar]
  20. K. Miłkowska-Piszczek, M. Korolczuk-Hejnak, “An Analysis of The Influence of Viscosity on The Numerical Simulation of Temperature Distribution, as Demonstrated by the CC Process”, Archives of Metallurgy and Materials. 58. 10.2478/amm-2013-0146 (2013) [Google Scholar]
  21. UNI EN 1993-1-1: Eurocode 3: Design of steel structures Part 1-1: General rules and rules for buildings, The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC (2005) [Google Scholar]
  22. T. Z. Harmathy, L. W. Allen, “Thermal Properties of Selected Masonry Unit Concretes”, Jour. Proc., vol. 2, pg. 132-142 (1973) [Google Scholar]
  23. U. Schneider, C. Diererichs, C. Ehm, “Effects of Temperature on Steel and Concrete for PCRV\u2019s”, Nuc. Eng. Des., vol. 67, pg.245-258 (1981) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.