Open Access
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01005
Number of page(s) 10
Published online 23 October 2020
  1. Yamashita, T., & Ando, K. (2018). Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents. Ultrasonics Sonochemistry, (52), 268-279. 10.1016/j.ultsonch.2018.11.025 [CrossRef] [PubMed] [Google Scholar]
  2. Niemczewski, B. (2007). Cavitation intensity of water under practical ultrasonic cleaning conditions. Ultrasonics sonochemistry, (14), 13-8. [CrossRef] [PubMed] [Google Scholar]
  3. Saalbach, K.-A.,Twiefel, J., & Wallaschek, J. (2018). Self-Sensing Cavitation Detection in Ultrasound-Induced Acoustic Cavitation. Ultrasonics, (94), 401-440. [PubMed] [Google Scholar]
  4. Xu, H., Tu, J., Niu, F. & Yang, P. (2016). Cavitation dose in an ultrasonic cleaner and its dependence on experimental parameters. Applied Acoustics, (101), 179-184. [CrossRef] [Google Scholar]
  5. Duran, F., & Teke, M. (2018). Design and implementation of an intelligent ultrasonic cleaning device. Intelligent Automation and Soft Computing, 1-10. [Google Scholar]
  6. Rahim A, Bargoshadi H., & Sarrafi S. (2011). Design and Manufacture an Ultrasonic Dispersion System. Sensors & Transducers Journal, 126(3), 52-63. [Google Scholar]
  7. Roohi, R., Abedi, E., Hashemi, S. M. B., Marszalek, K., & Barba, F. (2019). Ultrasound-assisted bleaching: Mathematical and 3D computational fluid dynamics simulation of ultrasound parameters on microbubble formation and cavitation structures. Innovative Food Science & Emerging Technologies, (55), 66-79. 10.1016/j.ifset.2019.05.014 [CrossRef] [Google Scholar]
  8. Tangsopha, W., Thongsri, J. & Busayaporn, W. (2017). Simulation of ultrasonic cleaning and ways to improve the efficiency. 2017 International Electrical Engineering Congress. [Google Scholar]
  9. Chahine, G. L., Kapahi, A., Choi, J.-K., & Hsiao, C.-T. (2016). Modeling of Surface Cleaning by Cavitation Bubble Dynamics and Collapse. Ultrasonic Sonochem, (29), 528-549. [CrossRef] [Google Scholar]
  10. Treeby, B., & Cox, B.T. (2010). k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. Journal of Biomedical Optics, 15 (2),021314-1021314-12. 021314. 10.1117/1.3360308 [CrossRef] [PubMed] [Google Scholar]
  11. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). Modeling of ultrasonic waves propagation in inhomogeneous medium using fibered spaces method (k-space). Metallurgical and Mining Industry, (6), 43-48. [Google Scholar]
  12. Treeby, B.E., Jaros, J., Rendell, A.P., & Cox, B.T. (2012). Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. The Journal of the Acoustical Society of America, 131(6), 4324-4336. [Google Scholar]
  13. Ray, W.H. (1981). Advanced process control. New York: McGraw-Hill. [Google Scholar]
  14. Morkun, V., & Morkun, N. (2018). Estimation of the crushed ore particles density in the pulp flow based on the dynamic effects of high-energy ultrasound. Archives of Acoustics, (43), 61-67. [Google Scholar]
  15. Morkun, V., Tron, V., & Paraniuk, D. (2015). Formation of rock geological structure model for drilling process adaptive control system. Metallurgical and Mining Industry, (7), 12-15. [Google Scholar]
  16. Morkun, V., Morkun, N., & Tron. V. (2015). Identification of control systems for ore-processing industry aggregates based on nonparametric kernel estimators. Metallurgical and Mining Industry, (1), 14-17. [Google Scholar]
  17. Morkun, V., Morkun, N., & Tron. V. (2015). Distributed closed-loop control formation for technological line of iron ore raw materials beneficiation. Metallurgical and Mining Industry, (7), 18-19. [Google Scholar]
  18. Morkun, V., Morkun, N., & Tron. V. (2015). Distributed control of ore beneficiation interrelated processes under parametric uncertainty. Metallurgical and Mining Industry, (8), 18-21. [Google Scholar]
  19. Morkun, V., Morkun, N., & Tron, V. (2015). Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation. Metallurgical and Mining Industry, (7), 6-9. [Google Scholar]
  20. Morkun, V., & Tron, V. (2014). Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry, (6), 4-7. [Google Scholar]
  21. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). The adaptive control for intensity of ultrasonic influence on iron ore pulp. metallurgical and mining industry, (6), 8-11. [Google Scholar]
  22. Tron, V., Tsokurenko, O., Paraniuk, D., & Haponenko, I. (2019) Formation of the adaptive fuzzy model of the rock geological structure for exploratory drilling. E3S Web of Conferences, (123), 01037. [CrossRef] [EDP Sciences] [Google Scholar]
  23. Mendel, J.M. (1995). Fuzzy logic systems for engineering: a tutorial. , 83(3), 345-377. [Google Scholar]
  24. Rajani C., Klami A., Salmi A., Rauhala T., Hsggstrom E., & Myllymaki P. (2018). Detecting industrial fouling by monotonicity during ultrasonic cleaning. 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP). [Google Scholar]
  25. Li, H.-X., Zhang, X.-X., & Li, S.-Y. (2007). A Three-Dimensional Fuzzy Control Methodology for a Class of Distributed Parameter Systems. IEEE Transactions on Fuzzy Systems, 15(3), 470481. [Google Scholar]
  26. Zhang, X.-X., Fu, Z.-Q., Li, S.-Y., Zou, T., & Wang, B. (2017). A time/space separation based 3D fuzzy modeling approach for nonlinear spatially distributed systems. International Journal of Automation and Computing, 15(1),52-65. [CrossRef] [Google Scholar]
  27. Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences, 8(3),199-249. [CrossRef] [Google Scholar]
  28. Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Transactions on Systems, Man, and Cybernetics, 20(2),404-418. [Google Scholar]
  29. Zhang, X., Li, S., & Li, H.-X. (2007). Interval-Valued Fuzzy Logic Control for a Class of Distributed Parameter Systems. International Journal of Uncertainty, Fuzziness and Knowledge- Based Systems, (15), 457-481. [CrossRef] [Google Scholar]
  30. Olyzarenko, S.A., Brezhnev, E.V., & Perepelytsa, A.V. (2010), Nechetkye mnozhestva typa 2. Termynolohyia y predstavlenye. Information Processing Systems, (89), 131-140. [Google Scholar]
  31. Olyzarenko, S.A., Kapranov, A.V. & Perepelytsa, A.V. (2011). The interval type 2 fuzzy sets. Terminology, representations, operations. Information Processing Systems, 2(92),39-45. [Google Scholar]
  32. Mamdani, E.H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers, (121), 1585-1588. [Google Scholar]
  33. Liang, Q., & Mendel, J.M. (2000). Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems, 8(5),535-550. [CrossRef] [Google Scholar]
  34. Mendel, J.M., John, R.I., & Liu, F. (2006). Interval Type-2 Fuzzy Logic Systems Made Simple. IEEE Transactions on Fuzzy Systems, (14), 808-821. [CrossRef] [Google Scholar]
  35. Robert, J. (2002). Embedded interval valued type-2 fuzzy sets. IEEE International Conference on Fuzzy Systems, (2), 1316-1320. [Google Scholar]
  36. Karnik, N.N., & Mendel, J.M. (2001). Centroid of a type-2 fuzzy set. Journal of Information Science, (132), 195-220. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.