Open Access
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01004
Number of page(s) 12
Published online 23 October 2020
  1. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group. [CrossRef] [Google Scholar]
  2. Nosic, A., Karasalihovic Sedlar, D., & Jukic, L. (2017). Oil and gas futures and options market. Rudarsko Geolosko Naftni Zbornik, 32(4),45-54. [CrossRef] [Google Scholar]
  3. Kraemer, D., Bajpayee, A., Muto, A., Berube, V., & Chiesa, M. (2009). Solar assisted method for recovery of bitumen from oil sand. Applied Energy, 86(9), 1437-1441. [Google Scholar]
  4. Lukin, O.Y. (2008). Vuhlevodnevyi potentsial nadr Ukrainy ta osnovni napriamky yoho osvoiennia. Visnyk Natsionalnoi Akademii Nauk Ukrainy, (4), 56-67. [Google Scholar]
  5. Stebel’ska, H.Y. (2015). Heolohichni umovy rozvidky ta rozrobky pokladiv vysokoviazkykh naft ta pryrodnykh bitumiv. Visnyk Kharkivskoho Natsionalnoho Universytetu, (1157), 53-57. [Google Scholar]
  6. Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6 (89)), 48-55. [CrossRef] [Google Scholar]
  7. Masliyah, J., Zhou, Z. J., Xu, Z., Czarnecki, J., & Hamza, H. (2008). Understanding Water-Based Bitumen Extraction from Athabasca Oil Sands. The Canadian Journal of Chemical Engineering, 82(4),628-654. [Google Scholar]
  8. Kasperski, K.L. (2001). Review of research on aqueous extraction of bitumen from mined oil sands. [Google Scholar]
  9. Liu, J., Xu, Z., & Masliyah, J. (2005). Processability of Oil Sand Ores in Alberta. Energy Fuels, 19(5),2056-2063. [Google Scholar]
  10. Romanova, U.G., Valinasab, M., Stasiuk, E.N., Yarranton, H.W., Schramm, L.L., & Shelfantook, W.E. (2006). The Effect of Oil Sands Bitumen Extraction Conditions on Froth Treatment Performance. Journal of Canadian Petroleum Technology, 45(9),36-45. [CrossRef] [Google Scholar]
  11. Schramm, L.L., Stasiuk, E.N., Yarranton, H., Maini, B.B., & Shelfantook, B. (2003). Temperature Effects in the Conditioning and Flotation of Bitumen From Oil Sands in Terms of Oil Recovery and Physical Properties. Journal of Canadian Petroleum Technology, 42(8),55-61. [CrossRef] [Google Scholar]
  12. Czarnecki, J., Radoev, B., Schramm, L.L., & Slavchev, R. (2005). On the nature of Athabasca Oil Sands. Advances in Colloid and Interface Science, 114-115 (53-60). [CrossRef] [PubMed] [Google Scholar]
  13. Czarnecki, J., & Moran, K. (2005). On the Stabilization Mechanism of Water-In-Oil Emulsions in Petroleum Systems. Energy Fuels, 19(5),2074-2079. [Google Scholar]
  14. Czarnecki, J., Moran, K., & Yang, X. (2008). On the “Rag Layer” and Diluted Bitumen Froth Dewatering. The Canadian Journal of Chemical Engineering, 85(5),748-755. [Google Scholar]
  15. Taylor, S. (2018). Interfacial Chemistry in Steam-Based Thermal Recovery of Oil Sands Bitumen with Emphasis on Steam-Assisted Gravity Drainage and the Role of Chemical Additives. Colloids and Interfaces, 2(2), 16. [CrossRef] [Google Scholar]
  16. Drelich, J. (2008). Wetting phenomena in oil sand systems and their impact on the water-based bitumen extraction process. Mining, Metallurgy & Exploration, (25), 1-12. [Google Scholar]
  17. Shah, A., Fishwick, R., Wood, J., Leeke, G., Rigby, S., & Greaves, M. (2010). A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy & Environmental Science, 3(6),700-714. [Google Scholar]
  18. Lazzaroni, E. F., Elsholkami, M., Arbiv, I., Martelli, E., Elkamel, A., & Fowler, M. (2016). Energy infrastructure modeling for the oil sands industry: Current situation. Applied Energy, (181), 435-445. [Google Scholar]
  19. Hofmann, H., Babadagli, T., & Zimmermann, G. (2014). Hot water generation for oil sands processing from enhanced geothermal system: process simulation for different hydraulic fracturing scenarios. Applied Energy, (113), 524-547. [Google Scholar]
  20. Rui, Z., Wang, X., Zhang, Z., Lu, J., Chen, G., Zhou, X., & Patil S. (2018). A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada. Applied Energy, (213), 76-91. [Google Scholar]
  21. Allen, E.W. (2008). Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives. Journal of Environmental Engineering and Science, 7(2),123-138. [CrossRef] [Google Scholar]
  22. Bondarchuk, I.B., & Shenderova, I.V. (2015). Classification of hydraulic borehole mining technological processes during pay zone development. IOP Conference Series: Earth and Environmental Science, (24), 012004. [CrossRef] [Google Scholar]
  23. Rehbinder, G. (1980). A Theory about Cutting Rock with Water Jet. Rock Mechanics, 12(3-4), 247-257. [CrossRef] [Google Scholar]
  24. Pedchenko, L., Pedchenko, N., Manhura, A., & Pedchenko, M. (2019). Development of natural bitumen (bituminous sands) deposits based on the borehole hydro-extraction technology. E3S Web of Conference, (123), 301036 [CrossRef] [Google Scholar]
  25. Pedchenko, M., & Pedchenko, L. (2018). Expanding of spheres the application of borehole hydroproduction technology to develop deposits of non-traditional hydrocarbons. E3S Web of Conference, (60), 00018. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.