Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01013
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202020101013
Published online 23 October 2020
  1. Coal Information: Overview. Paris. (2019). Retrieved from https://www.iea.org/reports/coal-information-2019 [Google Scholar]
  2. BP Statistical Review of World Energy. (2019). Retrieved from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf [Google Scholar]
  3. Cornot-Gandolphe, S. (2019). Status of Global Coal Markets and Major Demand Trends in Key Regions. Germany. Retrieved from https://www.ifri.org/sites/default/files/atoms/files/cornotgandolpheglobal coal market 2019.pdf [Google Scholar]
  4. Wang, Q., Song, X., & Liu, Y. (2020). China’s coal consumption in a globalizing world: Insights from Multi-Regional Input-Output and structural decomposition analysis. Science of The Total Environment, (711), 134790. https://doi.org/10.1016/j.scitotenv.2019.134790 [CrossRef] [Google Scholar]
  5. Kovalevska, I., Zhuravkov, M., Chervatiuk, V., Husiev, O., & Snihur, V. (2019). Generalization of trends in the influence of geomechanics factors on the choice of operation modes for the fastening system in the preparatory mine workings. Mining of Mineral Deposits, 13(3),1-10. [CrossRef] [Google Scholar]
  6. Sribna, Y., Trokhymets, O., Nosatov, I., & Kriukova, I. (2019). The globalization of the world coal market - contradictions and trends. E3S Web of Conferences, (123), 01044. https://doi.org/10.1051/e3sconf/201912301044 [CrossRef] [EDP Sciences] [Google Scholar]
  7. Wen, L. (2015). Shenhua’s Evolution From Coal Producer to Clean Energy Supplier. Cornerstone, 3(1), 10-14. [Google Scholar]
  8. Wiatros-Motyka, M. (2016). An overview of HELE technology deployment in the coal power plant fleets of China, EU, Japan and USA. London: IEA Clean Coal Centre, 75. [Google Scholar]
  9. Wang, S. (2020). Near-Zero Air Pollutant Emission Technologies and Applications for Clean Coal-Fired Power. Engineering. https://doi.org/10.1016/j.eng.2019.10.018 [Google Scholar]
  10. Pssarenko, M.V. (2016). Gorno-geometricheskoe obespechenie otsenki podgotovlennosti mestorozhdeniya k osvoeniyu po pokazatelyu zol’nosti uglya. Gornaya Promyshlennost’, 7(125),62-64. [Google Scholar]
  11. Snihur, V., Malashkevych, D., & Vvedenska, T. (2016). Tendencies of coal industry development in Ukraine. Mining of Mineral Deposits, 10(2), 1-8. https://doi:10.15407/mining10.02.001 [Google Scholar]
  12. Bahri Najafi, A., Saeedi, G.R., & Ebrahimi Farsangi, M.A. (2014). Risk analysis and prediction of out-of-seam dilution in longwall mining. International Journal of Rock Mechanics and Mining Sciences, (70), 115-122. https://doi.org/10.1016/Mirmms.2014.04.015 [CrossRef] [Google Scholar]
  13. Ermekov, T.E., Issabek, T.K., & Issabekov, E.T. (2016). Mining robotic complex with adaptive control software (mrcacs). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4). [Google Scholar]
  14. Ralston, J.C., & Strange, A.D. (2013). Developing selective mining capability for longwall shearers using thermal infrared-based seam tracking. International Journal of Mining Science and Technology, 23(1), 47-53. https://doi.org/10.1016/nimst2013.01.008 [CrossRef] [Google Scholar]
  15. Kosarev, I.V. (2016). Innovatsionnye napravleniya v sozdanii gorno-shakhtnogo oborudovaniya, obespechivayushchego povyshenie effektivnosi dobychi uglya. Vestnik Donetskogo Natsional’nogo Tekhnicheskogo Universiteta, (6), 12-18. [Google Scholar]
  16. Pavlenko, I., Salli, V., Bondarenko, V., Dychkovskiy, R., & Piwniak, G. (2007). Limits to Economic Viability of Extraction of Thin Coal Seams in Ukraine. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining. International Mining Forum, 2007, 129-132. https://doi.org/10.1201/noe0415436700.ch16 [CrossRef] [Google Scholar]
  17. Sokolov, A.S., & Potapov, V.V. (2014). Tekhniko-ekonomicheskaya effektivnost’ tekhnologii podzemnogo ugleobogashcheniya. Izvestiya Vuzov. Gornyy Zhurnal, (1), 42-46. [Google Scholar]
  18. Potapov, V.V., Feklistov, Yu.G., Vandyshev, A.M., & Potapov, V.Ya. (2006). Tekhnologicheskie skhemy upravleniya kachestvom uglya pri podzemnoy dobyche po friktsionnym kharakteristikam. Gornyy Informatsionno-Analiticheskiy Byulleten’, (5). [Google Scholar]
  19. Bondarenko, V.I., Russkikh, V.V., Malashkevich, D.S., & Sotskov, V.A. (2017). Tekhnologicheskaya skhema i oborudovanie dlya selektivnoy dobychi uglya dlinnymi ochistnymi zaboyani. Visti Donetskoho HirnychohoInstytutu, 2(41),19-24. [Google Scholar]
  20. Byzylo, V., Koshka, O., Poymanov, S., & Malashkevych, D. (2015). Resource-saving technology of selective mining with gob backfilling. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 485-491. https://doi.org/10.1201/b19901-84 [Google Scholar]
  21. Buzylo, V.I., Koshka, O.H., Yavorskyi, A.V., Yavorska, O.O., Tokar, L.A., Sulaiev, V.I., & Serdiuk, V.P. (2015). Selective mining technique for thin coal seams. Dnipropetrovsk: Natsionalnyi Hirnychyi Universytet, 132. [Google Scholar]
  22. Koshka, O., Yavors’kyy, A., & Malashkevych, D. (2014). Evaluation of surface subsidence during mining thin and very thin coal seams. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 229-233. https://doi.org/10.1201/b17547-41 [Google Scholar]
  23. Malashkevych, D., Sotskov, V., Medyanyk, V., & Prykhodchenko, D. (2018). Integrated Evaluation of the Worked-Out Area Partial Backfill Effect of Stress-Strain State of Coal-Bearing Rock Mass. Solid State Phenomena, (277), 213-220.https://doi.org/10.4028/www.scientific.net/ssp.277.213 [CrossRef] [Google Scholar]
  24. Sotskov, V.O., Podvyhina, O.O., Dereviahina, N.I., & Malashkevych, D.S. (2018). Substantiating the criteria for applying selective excavation of coal deposits in the Western Donbass. Journal of Geology, Geography and Geoecology, 26(1), 158-164.https://doi.org/https://doi.org/10.15421/111817 [Google Scholar]
  25. Kurs na enerhonezalezhnist: shakhtari DTEKEnerho dobuly bilshe 22 mln tonn vuhillia za 2019 rik. (2019). Retrieved from https://energo.dtek.com/media-center/press/kurs-na- energonezavisimost-shakhtery-dtek-energo-dobyli-bolshe-22-mln-tonn-uglya-za-2019-god/ [Google Scholar]
  26. Bondarenko, V., Cherniak, V., Cawood, F., & Chervatiuk, V. (2017). Technological safety of sustainable development of coal enterprises. Mining of Mineral Deposits, 11(2),1-11. https://doi.org/10.15407/mining11.02.001 [CrossRef] [Google Scholar]
  27. SOU 10.1.00185755.001-2004. (2004). Vuhillia bure, kamiane ta antratsyt. Metodyka rozrakhunkupokaznykivyakosti. Kyiv: Minpalyvenerho Ukrainy. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.