Open Access
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01023
Number of page(s) 11
Published online 23 October 2020
  1. Resources to reserves 2013 - oil, gas and coal technologies for the energy markets of the future. (2013). Paris: International Energy Agency. [Google Scholar]
  2. Statistical review of World energy. (2015). London: Centre for Energy Economics Research and Policy, Pureprint Group Limited. [Google Scholar]
  3. Adhikari, D. (2018). Solar energy as an alternative source of energy. Bibechana, (2), 1-7. [CrossRef] [Google Scholar]
  4. Hepbasli, A. (2004). Oil shale as an alternative energy source. Energy Sources, 26(2), 107-118. [CrossRef] [Google Scholar]
  5. Wind power as an alternative energy source. (2008). Physics Today. [Google Scholar]
  6. Khorolskyi, A., Hrinov, V., & Kaliushenko, O. (2019). Network models for searching for optimal economic and environmental strategies for field development. Procedia Environmental Science, Engineering and Management, 6(3),463-471. [Google Scholar]
  7. Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, CoalbedMethane, and Ores Mining, 465-469. [CrossRef] [Google Scholar]
  8. Petlovanyi, M., Lozynskyi, V., Saik, P., & Sai, K. (2019). Predicting the producing well stability in the place of its curving at the underground coal seams gasification. E3S Web of Conferences, (123), 01019. [CrossRef] [EDP Sciences] [Google Scholar]
  9. Sotskov, V., Dereviahina, N., & Malanchuk, L. (2019). Analysis of operation parameters of partial backfilling in the context of selective coal mining. Mining of Mineral Deposits, 13(4), 129138. [CrossRef] [Google Scholar]
  10. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The influence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko- Geolosko-Naftni Zbornik, 34(1),83-91. [CrossRef] [Google Scholar]
  11. Natural gas production. (2013). Oil and Energy Trends, 38(1),24-26. [CrossRef] [Google Scholar]
  12. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of thermodynamic conditions for gas hydrates formation from methane in the coal mines. Solid State Phenomena, (291), 155-172. [CrossRef] [Google Scholar]
  13. Bondarenko, V., Ganushevych, K., Sai, K., & Tyshchenko, A. (2011). Development of gas hydrates in the Black sea. Technical and Geoinformational Systems in Mining, 55-59. [CrossRef] [Google Scholar]
  14. Petlovanyi, M.V., & Medianyk, V.Y. (2018). Assessment of coal mine waste dumps development priority. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 28-35. [CrossRef] [Google Scholar]
  15. Max, M.D., & Johnson, A.H. (2016). Commercial potential of natural gas hydrate. Exploration and Production of Oceanic Natural Gas Hydrate, 355-394. [CrossRef] [Google Scholar]
  16. Hancock, S., Boswell, R., & Collett, T. (2019). Development of deepwater natural gas hydrates. Offshore Technology Conference. [Google Scholar]
  17. Rogers, R. (2015). Producing methane from offshore hydrates. Offshore Gas Hydrates, 101-133.e1. [Google Scholar]
  18. Bondarenko, V., Sai, K., Prokopenko, K., & Zhuravlov, D. (2018). Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black Sea. Mining of Mineral Deposits, 12(2),104-115. [CrossRef] [Google Scholar]
  19. Bondarenko, V.I., & Sai, K.S. (2018). Process pattern of heterogeneous gas hydrate deposits dissociation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 21-28. [CrossRef] [Google Scholar]
  20. Korsakov, O.D., Stupak, S.N., & Byakov, Yu.A. (1991). Black Sea gas hydrates are an unconventional type of hydrocarbon raw. Geologicheskiy Zhurnal, (5), 67-75. [Google Scholar]
  21. Merey, S., & Sinayuc, C. (2016). Analysis of the Black Sea gas hydrates. International Journal of Chemical and Molecular Engineering, 10(8),985-993. [Google Scholar]
  22. Makogon, Y.F., Holditch, S.A., & Makogon, T.Y. (2007). Natural gas-hydrates - a potential energy source for the 21st century. Journal of Petroleum Science and Engineering, 56(1-3), 1431. [CrossRef] [Google Scholar]
  23. Yang, X.G., & Qin, M.J. (2012). Natural gas hydrate as potential energy resources in the future. Advanced Materials Research, (462), 221-224. [Google Scholar]
  24. Methane gas hydrate: as a natural gas source. (2010). Green Energy and Technology, 113-160. [Google Scholar]
  25. Max, M.D., & Johnson, A.H. (2016). Energy overview: prospects for natural gas. Exploration and Production of Oceanic Natural Gas Hydrate, 1-38. [Google Scholar]
  26. Vasil’eva, Z.A., & Yakushev, V.S. (2017). Influence of gas well thermal insulation parameters on thawing intensity of permafrost and intrapermafrost gas hydrates. Kriosfera Zemli, (5), 92-98. [Google Scholar]
  27. Carroll, J. (2014). Combating hydrates using heat and pressure. Natural Gas Hydrates, 197-229. [CrossRef] [Google Scholar]
  28. Gornitz, V., & Fung, I. (1994). Potential distribution of methane hydrates in the world’s oceans. Global Biogeochemical Cycles, 8(3),335-347. [CrossRef] [Google Scholar]
  29. Gupta, A., & Aggarwal, A. (2014). Gas hydrates extraction by swapping-depressurisation method. Offshore Technology Conference-Asia. [Google Scholar]
  30. Jadhawar, P., Mohammadi, A.H., Yang, J., & Tohidi, B. (n.d.). Subsurface carbon dioxide storage through clathrate hydrate formation. Advances in the Geological Storage of Carbon Dioxide, 111126. [Google Scholar]
  31. Zheng, J., Loganathan, N.K., & Linga, P. (2019). Natural gas storage via clathrate hydrate formation: Effect of carbon dioxide and experimental conditions. Energy Procedia, (158), 55355540. [Google Scholar]
  32. Khasanov, M.K. (2017). Mathematical model of formation of carbon dioxide hydrate upon injection of carbon dioxide into a methane hydrate stratum. Theoretical Foundations of Chemical Engineering, 51(5),647-657. [CrossRef] [Google Scholar]
  33. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Collection - Mining of Mineral Deposits 2013, 203-206. [Google Scholar]
  34. Bondarenko, V., Sai, K., Ganushevych, K., & Ovchynnikov, M. (2015). The results of gas hydrates process research in porous media. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 123-127. [CrossRef] [Google Scholar]
  35. Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated chemical additives on the process of gas hydrate formation. Eastern-European Journal of Enterprise Technologies, 1(6(91)), 17-26. [Google Scholar]
  36. Ganushevych, K., Sai, K., & Korotkova, A. (2014). Creation of gas hydrates from mine methane. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 505-509. [CrossRef] [Google Scholar]
  37. Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6 (89)), 48-55. [CrossRef] [Google Scholar]
  38. Bondarenko, V., Kovalevska, I., Astafiev, D., & Malova, O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure - Percy Bridgman’s effect. Solid State Phenomena, (277), 137-146. [CrossRef] [Google Scholar]
  39. Vasil’yev, A., & Dimitrov, L. (2002). Otsenka prostranstvennogo raspredeleniya i zapasov gazo- gidratov v Chernom more. Geologiya i Geofizika, 7(43),61-67. [Google Scholar]
  40. Starostenko, V.I., Rusakov, O.M., Shnyukov, E.F., Kobolev, V.P., & Kutas, R.I. (2010). Methane in the northern Black Sea: characterization of its geomorphological and geological environments. Geological Society, London, Special Publications, 340(1),57-75. [CrossRef] [Google Scholar]
  41. Kobolev, V. (2017). Structural, tectonic and fluid-dynamic aspects of deep degassing of the black sea megatrench. Mining of Mineral Deposits, 11(1),31-49. [CrossRef] [Google Scholar]
  42. Makogon, Yu.F. (2010). Gazogidraty. Istoriya izucheniya i perspektivy osvoeniya. Geologiya i Poleznye Iskopaemye Mirovogo Okeana, (2), 5-21. [Google Scholar]
  43. Vasil’yev, V.I., Popov, V.V., & Tsypkin, G.G. (2006). Chislennoe issledovanie razlozheniya gazovykh gidratov, sosushchestvuyushchikh s gazom v prirodnykh plastakh. Izvestiya RAN. Mekhanika Zhidkosti Gaza, (4), 127-134. [Google Scholar]
  44. Popescu, I., Lericolais, G., Panin, N., De Batist, M., & Gillet, H. (2007). Seismic expression of gas and gas hydrates across the western Black Sea. Geo-Marine Letters, 27(2-4), 173-183. [CrossRef] [Google Scholar]
  45. Yang, M., Song, Y., Liu, Y., Chen, Y., & Li, Q. (2010). Influence of pore size, salinity and gas composition upon the hydrate formation conditions. Chinese Journal of Chemical Engineering, 18(2),292-296. [Google Scholar]
  46. Ginsburg, G.D., Kremlev, A.N., & Grigor’yev, M.N. (1989). Otkrytie fil’trogennykh gazovykh gidratov na Prikrymskom kontinental’nom podnozhii. Doklady ANSSSR, 309(2), 409-411. [Google Scholar]
  47. Ivanov, M.K., Limonov, A.F., & Woodside, J.M. (1998). Extensive deep fluid flux through the sea floor on the Crimean continental margin (Black Sea). Geological Society, London, Special Publications, 137(1),195-213. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.