Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01022
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202020101022
Published online 23 October 2020
  1. Stupnik, M., Kolosov, V., Pysmennyi, S., & Kovbyk, K. (2019). Selective mining of complex stuctured ore deposits by open stope systems. E3S Web of Conferences, (123), 01007. https://doi.org/10.1051/e3sconf/201912301007 [CrossRef] [EDP Sciences] [Google Scholar]
  2. Pysmenniy, S., Shvager, N., Shepel, O., Kovbyk, K., & Dolgikh, O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006. https://doi.org/10.1051/e3sconf/202016602006 [CrossRef] [EDP Sciences] [Google Scholar]
  3. Stupnik, M., Kalinichenko, V., & Pismennyi, S. (2013). Pillars sizing at magnetite quartzites room- work. Annual Scientific-Technical Collection - Mining of Mineral Deposits 2013, 11-15. https://doi.org/10.1201/b16354-3 [Google Scholar]
  4. Khomenko, O., & Rudakov, D. (2010). The first Ukrainian corporative university. New Techniques and Technologies in Mining - Proceedings of the School of Underground Mining, 203-206. https://doi.org/10.1201/b11329-34 [Google Scholar]
  5. Stupnik, M.I., Kalinichenko, V.O., Kalinichenko, O.V., Muzika, I.O., Fed’ko, M.B., & Pismennyi, S.V. (2015). The research of strain-stress state of magnetite quartzite deposit massif in the condition of mine “Gigant-Gliboka” of central iron ore enrichment works (CGOK). Metallurgical and Mining industry, (7), 377-383. [Google Scholar]
  6. Stupnik, M., Kalinichenko, V., Fedko, M., Kalinichenko, O., Pukhalskyi, V., & Kryvokhin, B. (2019). Investigation of the dust formation process when hoisting the uranium ores with a bucket. Mining of Mineral Deposits, 13(3),96-103. https://doi.org/10.33271/mining13.03.096 [CrossRef] [Google Scholar]
  7. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). The adaptive control for intensity of ultrasonic influence on iron ore pulp. Metallurgical and Mining Industry, (6), 8-11. [Google Scholar]
  8. Golik, V., Komashchenko, V., & Morkun, V. (2015). Feasibility of using the mill tailings for preparation of self-hardening mixtures. Metallurgical and Mining Industry, 7(3),38-41. [Google Scholar]
  9. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). Ultrasonic facilities for the ground materials characteristics control. Metallurgical and Mining Industry, (2), 31-35. [Google Scholar]
  10. Morkun, V., Morkun, N., & Pikilnyak, A. (2015). Adaptive control system of ore beneficiation process based on Kaczmarz projection algorithm. Metallurgical and Mining Industry, (2), 35-38. [Google Scholar]
  11. Morkun, V., & T ron, V. (2014) Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry, (6), 4-7. [Google Scholar]
  12. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining - Proceedings of the School of Underground Mining, 193-197. https://doi.org/10.1201/b11329-32 [CrossRef] [Google Scholar]
  13. Tarasyutin, V.M. (2015). Geotechnology features of high quality martite ore from deep mines of Kryvyi Rih basin. Naukovyi VisnykNatsionalnoho Hirnychoho Universytetu, (1), 54-60. [Google Scholar]
  14. Lutsenko, I., Fomovskaya, E., Koval, S., & Serdiuk, O. (2017). Development of the method of quasioptimal robust control for periodic operational processes. Eastern-European Journal of Enterprise Technologies, 4(2(88)), 52-60. https://doi.org/10.15587/1729-4061.2017.107542 [Google Scholar]
  15. Plevako, V., Potapov,V., Kycenko, V., Lebedynecj I., & Pedorych, I. (2016). Analytical study of the bending of isotropic plates, inhomogeneous in thickness. Eastern-European Journal of Enterprise Technologies, 4(7(82)), 10-16. https://doi.org/10.15587/1729-4061.2016.75052 [CrossRef] [Google Scholar]
  16. Stupnik, N., Kalinichenko, V., Kolosov, V., Pismennyy, S., & Shepel, A. (2014). Modeling of stopes in soft ores during ore mining. Metallurgical and Mining Industry, 6(3),32-37. [Google Scholar]
  17. Kovalevska, I., Zhuravkov, M., Chervatiuk, V., Husiev, O., & Snihur, V. (2019). Generalization of trends in the influence of geomechanics factors on the choice of operation modes for the fastening system in the preparatory mine workings. Mining of Mineral Deposits, 13(3),1-10. https://doi.org/10.33271/mining13.03.001 [CrossRef] [Google Scholar]
  18. Bondarenko, V., Symanovych, H., Kicki, J., Barabash, M., & Salieiev, I. (2019). The influence of rigidity of the collapsed roof rocks in the mined-out space on the state of the preparatory mine workings. Mining of Mineral Deposits, 13(2),27-33. https://doi.org/10.33271/mining13.02.027 [CrossRef] [Google Scholar]
  19. Kononenko, M., Khomenko, O., Savchenko, M., & Kovalenko, I. (2019). Method for calculation of drilling-and-blasting operations parameters for emulsion explosives. Mining of Mineral Deposits, 13(3),22-30. https://doi.org/10.33271/mining13.03.022 [CrossRef] [Google Scholar]
  20. Stupnik, N., Kalinichenko, V., Pismennij, S. & Kalinichenko, E. (2015). Features of underlying levels opening at “ArsellorMittal Kryvyic Rih” underground mine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 39-44. https://doi.org/10.1201/b19901-8 [CrossRef] [Google Scholar]
  21. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The influence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1),83-91. https://doi.org/10.17794/rgn.2019.L8 [Google Scholar]
  22. Khomenko, O., Rudakov, D., & Kononenko, M. (2011). Automation of drill and blast design. Technical And Geoinformational Systems in Mining: School of Underground Mining, 271-275. https://doi.org/10.1201/b11586-45 [CrossRef] [Google Scholar]
  23. Lavrinenko, V.F., & Lysak, V.I. (1991). Uroven’ udaroopasnosti porod na glubokikh gorizontakh shakht Krivbassa. Razrabotka Rudnykh Mestorozhdeniy, (52), 30-37. [Google Scholar]
  24. Herbert, R., & Nordstrom, A. (2017). Leachate generation and nitrogen release from small-scale rock dumps at the Kiruna iron ore mine. In International Mine Water Association Conference (pp. 140-146). Lappeenranta, Finland: Uppsala University Publications. [Google Scholar]
  25. Dolgikh, O., & Dolgikh, L. (2020). The study of the collapse zone by remote methods. E3S Web of Conferences, (166), 03002. https://doi.org/10.1051/e3sconf/202016603002 [CrossRef] [EDP Sciences] [Google Scholar]
  26. Morkun, V., Morkun, N., & Tron, V. (2015). Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation. Metallurgical and Mining Industry, 7(10),6-9. [Google Scholar]
  27. Morkun, V., Morkun, N., & Tron, V. (2015). Distributed control of ore beneficiation interrelated processes under parametric uncertainty. Metallurgical and Mining Industry, 7(8),18-21. [Google Scholar]
  28. Morkun, V., & Morkun, N. (2018). Estimation of the crushed ore particles density in the pulp flow based on the dynamic effects of high-energy ultrasound. Archives of Acoustics, 43(1),61-67. [Google Scholar]
  29. Morkun, V., Morkun, N., & Pikilnyak, A. (2015). The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp. Ultrasonics, (56), 340-343.https://doi.org/10.1016/j.ultras.2014.08.022 [Google Scholar]
  30. Morkun, V., Morkun, N., & Pikilnyak, A. (2014) Ultrasonic phased array parameters determination for the gas bubble size distribution control formation in the iron ore flotation. Metallurgical and Mining Industry, (3), 28-31. [Google Scholar]
  31. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical Processes During Underground Mining, 238 p. Book. https://doi.org/10.1201/b13157 [Google Scholar]
  32. Khomenko, O., Kononenko, M., & Myronova, I. (2017). Ecological and technological aspects of iron-ore underground mining. Mining of Mineral Deposits, 11(2),59-67.https://doi.org/10.15407/mining11.02.059 [CrossRef] [Google Scholar]
  33. Morkun, V. & Tron, V. 2014. Ecological and economic optimization of iron ore processing automated control. Metallurgical and Mining Industry, 6(5),8-10. [Google Scholar]
  34. Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi VisnykNatsionalnoho Hirnychoho Universytetu, (4), 44-54. [Google Scholar]
  35. Andreev, B.M., Brovko, D.V., & Khvorost, V.V. (2015). Determination of reliability and justification of object parameters on the surface of mines taking into account change-over to the lighter enclosing structures. Metallurgical and mining industry, (12), 378-382. [Google Scholar]
  36. Babets, D.V., Sdvyzhkova, O.O., Larionov, M.H., Tereshchuk, R.M. (2017). Otsinka stiikosti masyvu hirskykh porid, shcho bazuietsia na ymovirnisnomu pidkhodi ta reitynhovykh klasyfikatsiiakh. Naukovyi visnykNHU, (2), 58-64. [Google Scholar]
  37. Khomenko, O., Kononenko, M., Kovalenko, I., & Astafiev D. (2018). Self-regulating roof-bolting with the rock pressure energy use. E3S Web of Conferences, (60), 00009.https://doi.org/10.1051/e3sconf/20186000009 [CrossRef] [EDP Sciences] [Google Scholar]
  38. Khalymendyk, I., & Baryshnikov, A. (2018). The mechanism of roadway deformation in conditions of laminated rocks. Journal of Sustainable Mining, 17(2),41-47.https://doi.org/10.1016/j.jsm.2018.03.004 [CrossRef] [Google Scholar]
  39. Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., & Lozynskyi, V.H. (2019). Obgruntuvannia parametriv rozmyvu y peretikannia pulpy tseolit-smektytovoho tufu u vydobuvnii kameri. Naukovyi visnyk NHU, (6), 11-18. [Google Scholar]
  40. Stupnik, N., & Kalinichenko, V. (2012). Parameters of shear zone and methods of their conditions control at underground mining of steep-dipping iron ore deposits in Kryvyi Rig basin. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 15-17. https://doi.org/10.1201/b13157-4 [CrossRef] [Google Scholar]
  41. Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., Sai, K., & Saik, P. (2019). Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1),24-38.https://doi.org/10.33271/mining13.01.024 [CrossRef] [Google Scholar]
  42. Bondarenko, V., Cherniak, V., Cawood, F., & Chervatiuk, V. (2017). Technological safety of sustainable development of coal enterprises. Mining of Mineral Deposits, 11(2),1-11. https://doi.org/10.15407/mining11.02.001 [CrossRef] [Google Scholar]
  43. Stupnik, M., Kolosov, V., Kalinichenko, V., & Pismennyi, S. (2014). Physical modeling of waste inclusions stability during mining of complex structured deposits. Progressive Technologies of Coal, CoalbedMethane, and Ores Mining, 25-30. https://doi.org/10.1201/b17547 [CrossRef] [Google Scholar]
  44. Khomenko, O., Kononenko, M., & Petlyovanyy, M. (2014). Investigation of stress-strain state of rock massif around the secondary chambers. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 241-245. https://doi.org/10.1201/b17547-43 [CrossRef] [Google Scholar]
  45. Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the back-fill massif deformations around the chamber with mining depth increase. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 265-269 https://doi.org/10.1201/b19901-47 [Google Scholar]
  46. Dreus, A.Yu., Sudakov, A.K., Kozhevnikov, A.A., Vakhalin, Yu.N. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 5–10. [Google Scholar]
  47. Tron, V., Tsokurenko, O., Paraniuk, D., & Haponenko, I. (2019). Formation of the adaptive fuzzy model of the rock geological structure for exploratory drilling. E3S Web of Conferences, (123), 01037. https://doi.org/10.1051/e3sconf/201912301037 [CrossRef] [EDP Sciences] [Google Scholar]
  48. Stupnik, M., Kolosov, V., Kalinichenko, V., & Pismennyi, S. (2014). Physical modeling of waste inclusions stability during mining of complex structured deposits. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 25-30. https://doi.org/10.1201/b17547 [CrossRef] [Google Scholar]
  49. Pysmennyi, S., Brovko, D., Shwager,N., Kasatkina, I., Paraniuk, D., & Serdiuk, O. (2018). Development of complexstructure ore deposits by means of chamber systems under conditions of the Kryvyi Rih iron ore field. Eastern-European Journal of Enterprise Technologies, 5(1(95)), 3345. https://doi.org/10.15587/1729-4061.2018.142483 [CrossRef] [Google Scholar]
  50. Pysmenniy, S., Shvager, N., Shepel, O., Kovbyk, K., & Dolgikh, O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006. https://doi.org/10.1051/e3sconf/202016602006 [CrossRef] [EDP Sciences] [Google Scholar]
  51. Kalinichenko, O., Fedko, M., Kushnerov, I., & Hryshchenko, M. (2019). Muck drawing by inclined two-dimensional flow. E3S Web of Conferences, (123), 01015https://doi.org/10.1051/e3sconf/201912301015 [Google Scholar]
  52. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B., & Mirchenko, Ye.G. (2013). Prospects of application of TNT-free explosives in ore deposites developed by uderground mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 44-48. [Google Scholar]
  53. Stupnik, M., & Kalinichenko, V. (2013). Magnetite quartzite mining is the future of Kryvyi Rig iron ore basin. Annual Scientific-Technical Collection - Mining of Mineral Deposits 2013, 49-52. https://doi.org/10.1201/b16354-10 [CrossRef] [Google Scholar]
  54. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B., & Mirchenko, Ye.G. (2013). Influence of rock massif stress-strain state on uranium ore breaking technology. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 11-16. [Google Scholar]
  55. Ghodrati, B., & Kumar, U. (2005). Reliability and operating environment-based spare parts estimation approach. Journal of Quality in Maintenance Engineering, 11(2),169-184. https://doi.org/10.1108/13552510510601366 [Google Scholar]
  56. Wimmer, M., Nordqvist, A., Righetti, E., & Petropoulos, N. (2015). Analysis of rock fragmentation and its effect on gravity flow at the Kiruna sublevel caving mine. In 11th International Symposium on Rock Fragmentation by Blasting (pp. 775-791). Carlton VIC, Australia: Australasian Institute of Mining and Metallurgy. [Google Scholar]
  57. Herbert, R., & Nordstrom, A. (2017). Leachate generation and nitrogen release from small-scale rock dumps at the Kiruna iron ore mine. In International Mine Water Association Conference 2017 (pp. 140-146). Lappeenranta, Finland. [Google Scholar]
  58. Stupnik, M., Kalinichenko, V, Pysmennyi S., Kalinichenko, O. & Fedko, M. (2016). Method of simulating rock mass stability in laboratory conditions using equivalent materials. Mining of Mineral Deposits, 10(3),46-51. https://doi.org/10.15407/mining10.03.046 [CrossRef] [Google Scholar]
  59. Stupnik, N.I., Fedko, M.B., & Pismennyi, S.V. (2014). Development of recommendations for choosing excavation support types and junctions for uranium mines of state-owned enterprise skhidhzk. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21-25 [Google Scholar]
  60. Stupnik, M., Kalinichenko, O., Kalinichenko, V., Pysmennyi, S. & Morhun, O. (2018). Choice and substantiation of stable crown shapes in deep-level iron ore mining. Mining of Mineral Deposits, 12(4),56-62. https://doi.org/10.15407/mining12.04.056 [CrossRef] [Google Scholar]
  61. Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the back-fill massif deformations around the chamber with mining depth increase. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 265-269. https://doi.org/10.1201/b19901-47 [CrossRef] [Google Scholar]
  62. Khomenko, O., Kononenko, M., & Bilegsaikhan, J. (2018). Classification of Theories about Rock Pressure. Solid State Phenomena, (277), 157-167.https://doi.org/10.4028/www.scientific.net/ssp.277.157 [CrossRef] [Google Scholar]
  63. Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 147-150. https://doi.org/10.1201/b13157-26 [CrossRef] [Google Scholar]
  64. Carusone, O., & Hudyma, M. (2017). Variations in apparent stress and energy index as indicators of stress and yielding around excavations. Proceedings of the First International Conference on Underground Mining Technology, 205-218. https://doi.org/10.36487/acg rep/1710 16 carusone [CrossRef] [Google Scholar]
  65. Galaev, N.Z. (1990). Upravlenie sostoyaniem massiva gornykh porod pri podzemnoy razrabotke rudnykh mestorozhdeniy. Moskva: Nedra, 176. [Google Scholar]
  66. Kalinichenko, V.O., Dolgikh, O.V., & Dolgikh, L.V. (2019). Digital survey in studying open pit wall deformations. E3S Web of Conferences, (123), 01047. https://doi.org/10.1051/e3sconf/201912301047 [CrossRef] [EDP Sciences] [Google Scholar]
  67. Malakhov, G.M. (1990). Upravlenie gornym davleniem pri razrabotke rudnykh mestorozhdeniy Krivorozhskogo basseyna. Kyiv: Naukova dumka, 204. [Google Scholar]
  68. Turchaninov, I.A., Iofis, M.A., & Kaspar’yan, E.V. (1977). Osnovy mekhaniki gornykh porod. Moskva: Nedra, 503. [Google Scholar]
  69. Hudyma, M. R., Potvin, Y., Grant, D. R., Milne, D., Brummer, R. K., Board, M. (1994). Geomechanics of Sill Pillar Mining. In 1st North American Rock Mechanics Symposium (pp. 969976). Austin, USA: University of Texas at Austin. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.